A synergistic effect of P-glycoprotein (P-gp)/Abcb1a and breast cancer resistance protein (Bcrp)/Abcg2 was reported to limit the brain penetration of their common substrates. This study investigated this based on pharmacokinetics using Mdr1a/1b(-/-), Bcrp(-/-), and Mdr1a/1b(-/-)/Bcrp(-/-) mice. Comparison of the brain- and testis-to-plasma ratios (C(brain)/C(plasma) and C(testis)/C(plasma), respectively) of the reference compounds quinidine and dantrolene for P-gp and Bcrp, respectively, indicates that impairment of either P-gp and Bcrp did not cause any change in the efflux activities of Bcrp or P-gp, respectively, at both the blood-brain barrier (BBB) and blood-testis barrier (BTB). The C(brain)/C(plasma) and C(testis)/C(plasma) of the common substrates erlotinib, flavopiridol, and mitoxantrone were markedly increased in Mdr1a/1b(-/-)/Bcrp(-/-) mice even compared with Mdr1a/1b(-/-) and Bcrp(-/-) mice. Efflux activities by P-gp and Bcrp relative to passive diffusion at the BBB and BTB were separately evaluated based on the C(brain)/C(plasma) and C(testis)/C(plasma) in the knockout strains to the wild-type strain. P-gp made a larger contribution than Bcrp to the net efflux of the common substrates, but Bcrp activities were also significantly larger than passive diffusion. These parameters could reasonably account for the marked increase in C(brain)/C(plasma) and C(testis)/C(plasma) in the Mdr1a/1b(-/-)/Bcrp(-/-) mice. In conclusion, the synergistic effect of P-gp and Bcrp on C(brain)/C(plasma) and C(testis)/C(plasma) can be explained by their contribution to the net efflux at the BBB and BTB without any interaction between P-gp and Bcrp.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.109.162321DOI Listing

Publication Analysis

Top Keywords

cbrain/cplasma ctestis/cplasma
20
p-gp bcrp
20
common substrates
12
mdr1a/1b-/-/bcrp-/- mice
12
breast cancer
8
cancer resistance
8
resistance protein
8
protein bcrp/abcg2
8
erlotinib flavopiridol
8
flavopiridol mitoxantrone
8

Similar Publications

Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract.

Antimicrob Agents Chemother

October 2014

Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.

The blood-testis barrier and blood-brain barrier are responsible for protecting the male genital tract and central nervous system from xenobiotic exposure. In HIV-infected patients, low concentrations of antiretroviral drugs in cerebrospinal fluid and seminal fluid have been reported. One mechanism that may contribute to reduced concentrations is the expression of ATP-binding cassette drug efflux transporters, such as P-glycoprotein (P-gp).

View Article and Find Full Text PDF

Angelica gigas Nakai and its components are known to have neuroprotective, antiplatelet, and anticancer activities. The present study evaluated the in vitro and in vivo biopharmaceutical characterization of Angelica gigas component substances, including decursin (the main substance), decursinol angelate (decursin isomer), JH714 (ether form of decursin) and epoxide decursin (epoxide form of decursin). Decursin, decursinol angelate and JH714 exhibited acceptable metabolic stability (>50%) in liver microsomes from human and higher bound fraction (>90%) in human plasma operating ultrafiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!