A new clock mutant, named Andante, has been identified on the X chromosome of Drosophila melanogaster. Andante lengthens the period of the circadian eclosion and locomotor activity rhythms by 1.5-2.0 hours. The phase response curves for the eclosion and activity rhythms, indicating light-induced phase shifts, show a similar degree of lengthening. Andante also lengthens the periods of other clock mutants, including Clock, and alleles of the period locus. Analysis of locomotor activity rhythms reveals that Andante is semi-dominant, and Andante rhythms are highly temperature compensated. The sine oculis mutation, which eliminates the outer visual system, has no effect on the period of Andante. Deficiency mapping indicates that Andante is located in the 1OE1-2 to 1OF1 region of the X chromosome, close to the miniature-dusky locus. Whereas Andante flies have a dusky wing phenotype, dusky flies do not have an Andante clock phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.3109/01677069109066214DOI Listing

Publication Analysis

Top Keywords

activity rhythms
12
andante
9
clock mutant
8
clock mutants
8
andante lengthens
8
locomotor activity
8
clock
6
characterization andante
4
andante drosophila
4
drosophila clock
4

Similar Publications

Investigating the Spatio-Temporal Signatures of Language Control-Related Brain Synchronization Processes.

Hum Brain Mapp

February 2025

Université libre de Bruxelles (ULB), UNI - ULB Neuroscience Institute, Laboratoire de Neuroanatomie et Neuroimagerie translationnelles (LN2T), Brussels, Belgium.

Language control processes allow for the flexible manipulation and access to context-appropriate verbal representations. Functional magnetic resonance imaging (fMRI) studies have localized the brain regions involved in language control processes usually by comparing high vs. low lexical-semantic control conditions during verbal tasks.

View Article and Find Full Text PDF

Objective: Anorexia nervosa (AN) is an eating disorder characterized by severe weight loss and associated with hyperactivity and circadian rhythm disruption. However, the cellular basis of circadian rhythm disruption is poorly understood. Glial cells in the suprachiasmatic nucleus (SCN), the principal circadian pacemaker, are involved in regulating circadian rhythms.

View Article and Find Full Text PDF

Neuromodulation comes into focus as a non-pharmacological therapy with the vagus nerve as modulation target. The auricular vagus nerve stimulation (aVNS) has emerged to treat chronic diseases while re-establishing the sympathovagal balance and activating parasympathetic anti-inflammatory pathways. aVNS leads still to over and under-stimulation and is limited in therapeutic efficiency.

View Article and Find Full Text PDF

Detection of respiratory frequency rhythm in human alpha phase shifts: topographic distributions in wake and drowsy states.

Front Physiol

January 2025

Laboratory for Radiation Chemistry and Physics-030, Institute for Nuclear Sciences Vinča-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Introduction: The relationship between brain activity and respiration is recently attracting increasing attention, despite being studied for a long time. Respiratory modulation was evidenced in both single-cell activity and field potentials. Among EEG and intracranial measurements, the effect of respiration was prevailingly studied on amplitude/power in all frequency bands.

View Article and Find Full Text PDF

Objective: Carotid artery stenosis, primarily caused by atherosclerosis, is a major risk factor for ischemic stroke. Carotid endarterectomy (CEA) and carotid artery stenting (CAS) are established interventions to reduce stroke risk and restore cerebral blood flow. However, the effect of these treatments on circadian rhythms, and their influence on stroke recovery, remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!