Benzodiazepine site agonists or inverse agonists enhance or reduce gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition of neurons, respectively. Recently, it was demonstrated that the point mutation gamma 2F77I causes a drastic change in the affinity of a variety of benzodiazepine agonists or inverse agonists in receptor binding studies. Here we investigated the potency and efficacy of 10 benzodiazepine site ligands from 6 structural classes in wild-type and gamma 2F77I point mutated recombinant GABA(A) receptors composed of alpha 1 beta 3 gamma 2, alpha 2 beta 3 gamma 2, alpha 3 beta 3 gamma 2, alpha 4 beta 3 gamma 2, alpha 5 beta 3 gamma 2, and alpha 6 beta 3 gamma 2 subunits. Results indicate that the effects of the benzodiazepine site ligands zolpidem, zopiclone, Cl218872, L-655,708 and DMCM were nearly completely eliminated in all mutated receptors up to a 1 microM concentration. The effects of bretazenil, Ro15-1788 or abecarnil were eliminated in some, but not all mutated receptors, suggesting that the gamma 2F77I mutation differentially influences the actions of these ligands in different receptor subtypes. In addition, this point mutation also influences the efficacy of diazepam for enhancing GABA-induced chloride flux, suggesting that the amino acid residue gamma 2F77 might also be involved in the transduction of the effect of benzodiazepines from binding to gating. The application of these drugs in a novel mouse model is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615656 | PMC |
http://dx.doi.org/10.1016/j.ejphar.2010.03.015 | DOI Listing |
Front Immunol
December 2024
Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.
Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).
J Otol
October 2024
The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.
Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.
J Biochem
January 2025
Department of Biomedical Sciences, National Chung Cheng University, Chia Yi 621, Taiwan.
Phostensin (PTS) encoded by KIAA1949 binds to protein phosphatase 1, F-actin, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Most EHD-binding proteins contain a consensus motif, Asn-Pro-Phe (NPF), which interacts with the C-terminal EH domain of EHD proteins. Nevertheless, the NPF motif is absent in PTS.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
A highly efficient base-controlled synthesis of -β-trifluoromethyl-substituted 2-benzo[]imidazole-2-thiones and 2-fluoro-4-benzo[4,5]imidazo[2,1-][1,3]thiazines hydroamination or defluorinative cyclizations of α-(trifluoromethyl)styrenes with 2-mercaptobenzimidazole was developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Blk E5, #02-16, 117585, Singapore, SINGAPORE.
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogenous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!