The point mutation gamma 2F77I changes the potency and efficacy of benzodiazepine site ligands in different GABAA receptor subtypes.

Eur J Pharmacol

Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090 Vienna, Austria.

Published: June 2010

AI Article Synopsis

  • Benzodiazepine site agonists and inverse agonists modify the inhibition of neurons through GABA(A) receptors, with a mutation (gamma 2F77I) significantly affecting ligand affinity.
  • Recent research focused on the potency and efficacy of 10 benzodiazepine ligands across various GABA(A) receptor subtypes, revealing that many ligands lost effectiveness when tested on mutated receptors.
  • The gamma 2F77I mutation not only alters the action of certain benzodiazepines but may also play a role in how these drugs impact chloride ion movement, hinting at a deeper connection between binding and receptor function.

Article Abstract

Benzodiazepine site agonists or inverse agonists enhance or reduce gamma-aminobutyric acid(A) (GABA(A)) receptor-mediated inhibition of neurons, respectively. Recently, it was demonstrated that the point mutation gamma 2F77I causes a drastic change in the affinity of a variety of benzodiazepine agonists or inverse agonists in receptor binding studies. Here we investigated the potency and efficacy of 10 benzodiazepine site ligands from 6 structural classes in wild-type and gamma 2F77I point mutated recombinant GABA(A) receptors composed of alpha 1 beta 3 gamma 2, alpha 2 beta 3 gamma 2, alpha 3 beta 3 gamma 2, alpha 4 beta 3 gamma 2, alpha 5 beta 3 gamma 2, and alpha 6 beta 3 gamma 2 subunits. Results indicate that the effects of the benzodiazepine site ligands zolpidem, zopiclone, Cl218872, L-655,708 and DMCM were nearly completely eliminated in all mutated receptors up to a 1 microM concentration. The effects of bretazenil, Ro15-1788 or abecarnil were eliminated in some, but not all mutated receptors, suggesting that the gamma 2F77I mutation differentially influences the actions of these ligands in different receptor subtypes. In addition, this point mutation also influences the efficacy of diazepam for enhancing GABA-induced chloride flux, suggesting that the amino acid residue gamma 2F77 might also be involved in the transduction of the effect of benzodiazepines from binding to gating. The application of these drugs in a novel mouse model is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615656PMC
http://dx.doi.org/10.1016/j.ejphar.2010.03.015DOI Listing

Publication Analysis

Top Keywords

alpha beta
24
beta gamma
24
gamma alpha
20
gamma 2f77i
16
benzodiazepine site
16
point mutation
12
site ligands
12
gamma
11
mutation gamma
8
potency efficacy
8

Similar Publications

Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.

Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).

View Article and Find Full Text PDF

Investigating the expression profiles of cysteine string proteins (CSPs) in cochlear tissue.

J Otol

October 2024

The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.

Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.

Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.

View Article and Find Full Text PDF

Phostensin (PTS) encoded by KIAA1949 binds to protein phosphatase 1, F-actin, Eps 15 homology domain-containing protein 1 (EHD1) and EHD4. Most EHD-binding proteins contain a consensus motif, Asn-Pro-Phe (NPF), which interacts with the C-terminal EH domain of EHD proteins. Nevertheless, the NPF motif is absent in PTS.

View Article and Find Full Text PDF

A highly efficient base-controlled synthesis of -β-trifluoromethyl-substituted 2-benzo[]imidazole-2-thiones and 2-fluoro-4-benzo[4,5]imidazo[2,1-][1,3]thiazines hydroamination or defluorinative cyclizations of α-(trifluoromethyl)styrenes with 2-mercaptobenzimidazole was developed.

View Article and Find Full Text PDF

Packing Engineering of Zirconium Metal-Organic Cages in Mixed Matrix Membranes for CO2/CH4 Separation.

Angew Chem Int Ed Engl

January 2025

National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Blk E5, #02-16, 117585, Singapore, SINGAPORE.

Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogenous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!