We investigated two commonly used antimicrobial agents triclosan (TCS) and triclocarban (TCC) in the Pearl River system in China (i.e., Liuxi, Zhujiang and Shijing Rivers) and four sewage effluents during dry and wet seasons. The median values for TCS and TCC were the highest in the surface water and sediments of the Shijing River, followed by the Zhujiang River and Liuxi River. Screening level risk assessment using the risk quotient (RQ) method showed that TCS and TCC in surface water posed median risks in the Zhujiang and Liuxi Rivers (RQs: 0.28-0.62 for TCS, and 0.15-0.80 for TCC) and high risks in the Shijing River (RQs: 5.15-9.55 for TCS, and 3.32-5.83 for TCC). Higher risks (RQs: 3.63-28.47 for TCS, and 3.13-24.54 for TCC) were found in the sediments than in surface water of the Pearl River system. The four sewage effluents and Shijing River as well as other urban streams in Guangzhou metropolitan area were identified as the sources of the two compounds in the main river Zhujiang River. The mass inventories of TCS and TCC in the Pearl River system indicate that the sediments are not only an important sink but also a potential source for the two compounds in surface water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2010.02.082 | DOI Listing |
Environ Sci Technol
January 2025
Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.
Nitryl chloride (ClNO) is a key precursor of chlorine radicals, influencing atmospheric oxidation and secondary pollutants formation. Few studies have examined the ClNO chemistry from the perspective of the planetary boundary layer. Here, we conducted a vertically resolved investigation of ClNO at six heights (ranging from 5 to 335 m) on a 356 m tower in the Pearl River Delta, China, during winter 2021.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, PR China. Electronic address:
As one of the significant air pollutants, nitrogen oxides (NO = NO + NO) not only pose a great threat to human health, but also contribute to the formation of secondary pollutants such as ozone and nitrate particles. Due to substantial uncertainties in bottom-up emission inventories, simulated concentrations of air pollutants using GEOS-Chem model often largely biased from those of ground-level observations. To address this issue, we developed a new deep learning model to simulate the inverse process of the GEOS-Chem model.
View Article and Find Full Text PDFWater Res
January 2025
Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Mineral scaling and scaling-induced wetting are critical issues in membrane distillation (MD) during treatment of saline wastewaters. Gypsum scaling and scaling-induced wetting in MD were successfully regulated by heterogeneous crystallization with in-line granular filtration in this study. Stable water recovery increased from 32.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
This study expands the original two-dimensional carbon footprint model into a three-dimensional model form. Introduce two indicators of carbon footprint depth (CF) and size (CF) to form a three-dimensional carbon footprint model (CF), which is used to respectively represent the occupation and consumption of natural capital reserves by human activities' carbon emissions. Based on the 3D carbon footprint model, this paper calculated the CF, CF, and CF for four different urban agglomerations of China (BTH, YRD, PRD, and CY) spanning from 2000 to 2017.
View Article and Find Full Text PDFProtein Eng Des Sel
January 2025
Pfizer Rare Disease Research Unit, 610 Main Street, Cambridge, MA 02139, United States.
Pompe disease is a tissue glycogen disorder caused by genetic insufficiency of the GAA enzyme. GAA enzyme replacement therapies for Pompe disease have been limited by poor lysosomal trafficking of the recombinant GAA molecule through the native mannose-6-phosphate-mediated pathway. Here, we describe the successful rational engineering of a chimeric GAA enzyme that utilizes the binding affinity of a modified IGF-II moiety to its native receptor to bypass the mannose-6-phosphate-mediated lysosomal trafficking pathway, conferring a significant increase in cellular uptake of the GAA enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!