The type III interferons (IFN-lambda1, 2, and 3) induce an antiviral response similar to IFN-alpha/beta, but mediate their activity through a unique receptor. We found that like IFN-alpha/beta, IFN-lambda prevents the assembly of HBV capsids, demonstrating convergence of the two signaling pathways through a single antiviral mechanism. In contrast to IFN-lambda, the structurally related cytokine interleukin (IL)-22 only minimally reduced HBV replication. The transcriptional program activated by IL-22 displayed little similarity to that induced by IFN-lambda, but instead resembled the response elicited by IL-6. We also found that murine IFN-lambda2 had only weak antiviral activity against HBV in the liver of transgenic mice, and that human IFN-lambda2 activity in serum correlated with the sensitivity of the cytokine to proteases. These results demonstrate that the IFN-alpha/beta and IFN-lambda anti-HBV responses operate through a single molecular mechanism, and support the notion that IFN-lambda plays a local, rather than systemic, role in antiviral immunity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864496PMC
http://dx.doi.org/10.1016/j.virol.2010.02.022DOI Listing

Publication Analysis

Top Keywords

molecular mechanism
8
ifn-alpha/beta ifn-lambda
8
ifn-lambda
5
lambda alpha
4
alpha interferons
4
interferons inhibit
4
inhibit hepatitis
4
hepatitis virus
4
virus replication
4
replication common
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a chronic joint condition affecting millions worldwide, characterized by the gradual degeneration of joint cartilage, leading to pain, stiffness, and functional impairment. Although the pathogenesis of OA is not fully understood, the roles of inflammation, metabolic dysregulation, and biomechanical stress are increasingly recognized. Current treatments, including pharmacotherapy, physical therapy, and surgical interventions, aim to alleviate symptoms and improve quality of life, yet they face limitations and challenges.

View Article and Find Full Text PDF

Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (Mpro): A Combined In Vitro and In Silico Approach.

Chem Biodivers

January 2025

Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.

View Article and Find Full Text PDF

Precision Metal Nanoclusters Meet Proteins: Crafting Next-Gen Hybrid Materials.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!