Six eukaryotic supergroups have been proposed based on both morphological and molecular data. However, some of these supergroups are contentious and the deep relationships among them are poorly resolved. This is due to a limited number of morphological characters and few molecular markers in current use. The lack of resolution in most multigene analyses, including phylogenomic analyses, necessitates a search for additional, appropriate molecular markers to enable targeted sampling of taxa in key phylogenetic positions. We evaluated the phylogenetic signal of 860 proteins obtained from the Clusters of Orthologous Groups of proteins (COGs) database. We report a total of 17 markers that resulted in well-resolved topologies that are congruent with well-established components of the eukaryotic tree. To establish their utility, we designed universal degenerate primers for six markers, some of which showed promising results in unicellular eukaryotes. Finally, we present phylogenetic informativeness profiles for seven selected markers, revealing that the markers contain phylogenetic signal that spans the whole tree including the deeper branches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2010.03.010DOI Listing

Publication Analysis

Top Keywords

molecular markers
12
eukaryotic tree
8
phylogenetic signal
8
markers
7
identification molecular
4
markers assembling
4
assembling eukaryotic
4
tree life
4
life eukaryotic
4
eukaryotic supergroups
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!