Skin photo-ageing induced by ultraviolet (UV) radiation is mainly ascribed to oxidative stress and reactive oxygen species (ROS). Coenzyme Q10 (CoQ10) has been reported as a powerful antioxidant in plasma. However, CoQ10 was barely satisfactory in topical drug delivery because of its lipid solubility. To improve the anti-oxidative efficiency of CoQ10 in skin photo-ageing, the present research prepared a novel CoQ10 nano-structured lipid carrier (CoQ10-NLC) and characterised it by size and freeze-fracture transmission electron microscopy (FF-TEM). In UVA-irradiated fibroblasts, the protection of CoQ10-NLC was more effective than the CoQ10-emulsion as demonstrated by cell viability and morphological changes of the cell body and nucleus. In addition, malondialdehyde (MDA, the product of lipid peroxidation) concentration decreased by 61.5% in the group treated with CoQ10-NLC compared to the group subjected to general CoQ10-emulsion. In the presence of CoQ10-NLC, the activities of the anti-oxidative enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) were reinstated to 81% and 75%, respectively, of the control group. In vivo, the CoQ10-NLC displayed a stronger capability to penetrate the stratum corneum and permeate the dermis after a topical skin application. These results reveal that CoQ10-NLC has greater antioxidant properties and topical skin penetration than the CoQ10-emulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2010.03.032 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, PR China.
Marine biofilms were newly revealed as a bank of hidden microbial diversity and functional potential. In this study, a Gram-stain-negative, aerobic, oval and non-motile bacterium, designated LMIT008, was isolated from the biofilm of concrete breakwater structures located in the coastal area of Shantou, PR China. Strain LMIT008 was found to grow at salinities of 1-7% NaCl, at pH 5-8 and at temperatures 10-40 °C.
View Article and Find Full Text PDFJ Adv Res
January 2025
Department of Oncology, The First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences Xi'an Jiaotong University Xi'an Shanxi China. Electronic address:
Introduction: Ferroptosis is an iron-dependent form of cell death triggered by the excessive accumulation of lipid peroxides. Understanding the regulatory mechanisms of ferroptosis and developing strategies to target this process hold significant clinical applications in tumor therapy.
Objective: Our study aims to search for novel candidate genes involved in the regulation of ferroptosis and to investigate their mechanism of action in ferroptosis and tumor therapy.
J Child Neurol
January 2025
Department of Pediatrics, Division of Child Neurology, Ankara Etlik City Hospital, Ankara, Turkey.
Mitochondrial complex I transfers electrons from NADH (nicotinamide adenine dinucleotide) to ubiquinone, facilitating ATP synthesis via a proton gradient. Complex I defects are common among the mitochondrial diseases, especially in childhood. , located in complex I's transmembrane domain, is not directly involved in catalytic activity, but the mutations are associated with Leigh syndrome and complex I defects.
View Article and Find Full Text PDFNeurobiol Dis
February 2025
Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).
View Article and Find Full Text PDFCureus
December 2024
Pediatrics Department, Dr. Sulaiman Al Habib Hospital, Riyadh, SAU.
Coenzyme Q2 (CoQ2) mutations are a group of autosomal recessive mitochondria-linked diseases that result in coenzyme Q10 (CoQ10) deficiency (CoQ10: a cofactor in mitochondrial energy production). Its deficiency leads to multiple systemic clinical presentations; however, isolated steroid-resistant nephrotic syndrome (SRNS) is considerably rare. Multiple genetic mutations have been reported with different ranges of severity and prognosis, with variable responses to CoQ10 supplementation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!