Resistance to endocrine therapy is a major clinical problem in breast cancer. The role of ERalpha splice variants in endocrine resistance is largely unknown. We observed reduced protein expression of an N-terminally truncated ERalpha46 in endocrine-resistant LCC2, LCC9, and LY2 compared to MCF-7 breast cancer cells. Transfection of LCC9 and LY2 cells with hERalpha46 partially restored growth inhibition by TAM. Overexpression of hERalpha46 in MCF-7 cells reduced estradiol (E(2))-stimulated endogenous pS2, cyclin D1, nuclear respiratory factor-1 (NRF-1), and progesterone receptor transcription. Expression of oncomiR miR-21 was lower in TAM-resistant LCC9 and LY2 cells compared to MCF-7 cells. Transfection with ERalpha46 altered the pharmacology of E(2) regulation of miR-21 expression from inhibition to stimulation, consistent with the hypothesis that hERalpha46 inhibits ERalpha activity. Established miR-21 targets PTEN and PDCD4 were reduced in ERalpha46-transfected, E(2)-treated MCF-7 cells. In conclusion, ERalpha46 appears to enhance endocrine responses by inhibiting selected ERalpha66 responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875375 | PMC |
http://dx.doi.org/10.1016/j.mce.2010.03.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!