Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superhydrophobic, highly transparent, and stable organic-inorganic composite nanocoating is successfully prepared by a simple sol-gel dip-coating method. This method involves control of the aggregation of inorganic colloid particles by polymerization and ultrasonic vibration to create the desired micro/nanostructure in the coating. Superhydrophobicity and transparency of the coating can be controlled by adjusting the initial concentration of monomer and the size of aggregates in the sol-gel. Thus, superhydrophobicity and high transparency can be concurrently achieved in a single coating. The prepared coating also possesses good thermal stability. Its superhydrophobicity can be maintained from 20 to 90 degrees C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn901581j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!