Multifunctional peptide-polymer hybrid materials have been applied as efficient and biocompatible quantum-dot coating materials. Significant pH responsiveness (e.g., an influence of the pH on the quantum yields of the peptide-polymer/QDs) was found and is attributed to conformational rearrangements of the peptide backbone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja909570v | DOI Listing |
Molecules
January 2025
School of Materials and Environment, Beijing Institute of Technology, Zhuhai 519088, China.
This study employs quantum chemical computational methods to predict the spectroscopic properties of fluorescent probes 2,6-bis(2-benzimidazolyl)pyridine (BBP) and ()-3-(2-(1-benzo[]imidazol-2-yl)vinyl)-9-(2-(2-methoxyethoxy)ethyl)-9-carbazole (BIMC). Using time-dependent density functional theory (TDDFT), we successfully predicted the fluorescence emission wavelengths of BBP under various protonation states, achieving an average deviation of 6.0% from experimental excitation energies.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:
Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.
View Article and Find Full Text PDFHerein, we present a strategy to access a novel class of pH-responsive, dual-state emissive (DSE), highly fluorescent pyrrole-based chromophores diformylation of dipyrroethenes (DPE) followed by condensation with various aniline derivatives. The DPE-based chromophores exhibit a large Stokes shift and maintain good fluorescence quantum yields. Remarkably, these chromophores demonstrate reversible colourimetric changes and a fluorometric 'on-off-on' switch in response to pH variations.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana46556, United States.
Small extracellular vesicles (sEVs) are promising nanocarriers for drug delivery to treat a wide range of diseases due to their natural origin and innate homing properties. However, suboptimal therapeutic effects, attributed to ineffective targeting, limited lysosomal escape, and insufficient delivery, remain challenges in effectively delivering therapeutic cargo. Despite advances in sEV-based drug delivery systems, conventional approaches need improvement to address low drug-loading efficiency and to develop surface functionalization techniques for precise targeting of cells of interest, all while preserving the membrane integrity of sEVs.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
Tianjin Baogang Rare Earth Research Institute Co., Ltd, Tianjin, 300300, People's Republic of China.
Purpose: The primary goals of endodontic therapy are to eliminate microbes and prevent reinfection. Persistent root canal infections and failure of root canal therapy are primarily attributed to the presence of bacteria, particularly E. faecalis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!