AI Article Synopsis

  • The study focuses on measuring and understanding the hydrodynamic interactions of micro-silica spheres in various particle networks using holographic optical tweezers.
  • The research identifies characteristic eigenmodes of three different multi-particle configurations: a linear chain, a square grid, and a ring, within 20-40 seconds of observation.
  • The findings confirm that the behavior of the eigenmodes and their decay rates align with theoretical predictions from the Oseen tensor and Langevin equation, and demonstrate the potential of the micro-ring to serve as a non-invasive sensor for measuring local viscosity changes.

Article Abstract

The hydrodynamic interactions of micro-silica spheres trapped in a variety of networks using holographic optical tweezers are measured and characterized in terms of their predicted eigenmodes. The characteristic eigenmodes of the networks are distinguishable within 20-40 seconds of acquisition time. Three different multi-particle networks are considered; an eight-particle linear chain, a nine-particle square grid and, finally, an eight-particle ring. The eigenmodes and their decay rates are shown to behave as predicted by the Oseen tensor and the Langevin equation, respectively. Finally, we demonstrate the potential of using our micro-ring as a non-invasive sensor to the local environmental viscosity, by showing the distortion of the eigenmode spectrum due to the proximity of a planar boundary.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201000003DOI Listing

Publication Analysis

Top Keywords

real time
4
time characterization
4
characterization hydrodynamics
4
hydrodynamics optically
4
optically trapped
4
networks
4
trapped networks
4
networks micro-particles
4
micro-particles hydrodynamic
4
hydrodynamic interactions
4

Similar Publications

This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.

View Article and Find Full Text PDF

Background: Treatment of atrial fibrillation (AF) with catheter ablation (CA) has evolved significantly. However, real-world data on long-term outcomes are limited, particularly in low- and middle-income countries.

Objective: This multicenter prospective cohort of consecutive patients aimed to evaluate the safety and efficacy of first-time CA for AF in Southern Brazil from 2009 to 2024.

View Article and Find Full Text PDF

Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).

Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.

View Article and Find Full Text PDF

Multimodal sensing using soft body dynamics plays a crucial role in controlling soft robotic motions. An intriguing application of such soft robot control is to mimic whiskers and digitize soft body motion through whisker dynamics. The challenge herein is to simultaneously monitor the directions, speed, force, and slip information of the whisker motion.

View Article and Find Full Text PDF

Safety-assured high-speed navigation for MAVs.

Sci Robot

January 2025

Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong, China.

Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!