A multilayered microchip (25 x 95 mm) used for vacuum distillation is designed, fabricated and tested by rectification of a water-methanol mixture. The polymer chip employs a cooling channel to generate a temperature gradient along a distillation channel below, which is separated into a channel (72 microm deep) for liquid phase and a channel (72 microm deep) for vapor phase by an incorporated microporous poly(tetrafluoroethylene) (PTFE) membrane. The temperature gradient is controlled by adjusting hotplate temperature and flow rate of cooling water to make the temperatures in the stripping section higher than the increasing boiling points of the water-enriched liquids and the temperatures in the rectifying section lower than the decreasing dew points of the methanol-enriched vapors. The effects of temperature gradient, feed composition, feed flow rate and membrane pore size on the micro distillation are also investigated. A theoretical plate number up to 1.8 is achieved at the optimum conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b915534a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!