We present a novel scheme for producing nanotube membranes using free-standing hollow nanowires, with easily controllable dimensions. GaAs-AlInP core-shell nanowires were grown by metal-organic vapor phase epitaxy and were partially embedded in a polymer film. The GaAs core and substrate were etched selectively, leaving tubes with open access to both sides of the membrane. Electrophoretic transport of T4-phage DNA through the hollow nanowires was demonstrated using epifluorescence microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/15/155301DOI Listing

Publication Analysis

Top Keywords

hollow nanowires
12
nanofluidics hollow
4
nanowires
4
nanowires novel
4
novel scheme
4
scheme producing
4
producing nanotube
4
nanotube membranes
4
membranes free-standing
4
free-standing hollow
4

Similar Publications

Pt-modified hollow tube-like polyaniline-based NH sensor.

J Hazard Mater

November 2024

College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China. Electronic address:

Polyaniline (PANI) has significant applications in room-temperature NH detection due to its unique and reversible doping-dedoping chemical state, stable electrical conductivity and easy and convenient synthesis process. However, pristine PANI still suffers from poor performance in terms of sensitivity, response speed and detection limit. To address issues of low sensitivity and high detection limit, a platinum (Pt)-modified hollow PANI (Pt-PANI) sensor was designed.

View Article and Find Full Text PDF

Cardiovascular diseases remain the leading cause of mortality, necessitating advancements in cardiac tissue engineering platforms for improved disease modeling, drug screening, and regenerative therapies. The chief challenge to recapitulating the beating behavior of cardiomyocytes is creation of the circular stress profile experienced by hollow organs in the natural heart due to filling pressure and integrated strategies for intercellular communication to promote cell-to-cell connections. We present a platform featuring addressable arrays of nanogrooved polydimethylsiloxane (PDMS) diaphragms for cell alignment and circular mechanical stimulation, with embedded silver nanowires (AgNWs) for electrical cues, so that cardiomyocyte functionality can be assessed under these synergistic influences.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method for 3D mapping temperatures in cryogenic environments using a Raman-based distributed temperature sensor with telecom fibers and superconducting nanowire single photon detectors (SNSPDs).
  • The device achieves a temperature sensing capability down to (48 ± 2) K by coiling a test fiber around stages of a liquid helium-cooled cryostat, leveraging the low dark count rates of SNSPDs.
  • The technique is used to monitor temperature gradients in a hollow aluminum sample during nitrogen cooling, demonstrating potential applications in superconducting, quantum computing, and aerospace instrumentation with a spatial resolution of centimeters.
View Article and Find Full Text PDF

In this study, hierarchical cellulose acetate/polyvinylpyrrolidone hollow microfibers (CA/PVP HMFs) were first prepared via a dip coating method using a steel wire as tubular template and then supported a sol-gel deposition of titania nanoparticles (NPs) to derive CA/PVP@titania NP HMFs. After hydrothermally treated in NaOH solution, CA/PVP@titania NP HMFs were transformed to CA/PVP@titania nanowire (NW) HMFs. SEM observation showed that CA/PVP@titania NW HMFs had a hollow structure with diameters of 450-600 μm and exhibited a hierarchical and nanofibrous structure.

View Article and Find Full Text PDF

Recent Advances in Hollow Nanostructures: Synthesis Methods, Structural Characteristics, and Applications in Food and Biomedicine.

J Agric Food Chem

September 2024

Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, 5333 Xi'an Road, Changchun 130062, People's Republic of China.

Article Synopsis
  • The text discusses the potential of hollow nanostructures (HNS) in advancing technology and creating sustainable products, due to their unique properties like high surface area and customizable designs.
  • It highlights various shapes of HNS, such as nanospheres and nanoboxes, and their applications in fields like biomedicine, materials chemistry, food industry, and environmental science.
  • The review also covers recent synthesis methods for HNS and summarizes their uses in food packaging, biosensors, and drug delivery, while outlining future research directions and challenges in the field.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!