The promise of cell-based therapies for diabetic complications: challenges and solutions.

Circ Res

Pharmacology and Therapeutics, College of Medicine, University of Florida, PO Box 100267, Gainesville, FL 32610-0267, USA.

Published: March 2010

The discovery of endothelial progenitor cells (EPCs) in human peripheral blood advanced the field of cell-based therapeutics for many pathological conditions. Despite the lack of agreement about the existence and characteristics of EPCs, autologous EPC populations represent a novel treatment option for complications requiring therapeutic revascularization and vascular repair. Patients with diabetic complications represent a population of patients that may benefit from cellular therapy yet their broadly dysfunctional cells may limit the feasibility of this approach. Diabetic EPCs have decreased migratory prowess and reduced proliferative capacity and an altered cytokine/growth factor secretory profile that can accelerate deleterious repair mechanisms rather than support proper vascular repair. Furthermore, the diabetic environment poses additional challenges for the autologous transplantation of cells. The present review is focused on correcting diabetic EPC dysfunction and the challenges involved in the application of cell-based therapies for treatment of diabetic vascular complications. In addition, ex vivo and in vivo functional manipulation(s) of EPCs to overcome these hurdles are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816281PMC
http://dx.doi.org/10.1161/CIRCRESAHA.109.213140DOI Listing

Publication Analysis

Top Keywords

cell-based therapies
8
diabetic complications
8
vascular repair
8
diabetic
6
promise cell-based
4
therapies diabetic
4
complications
4
complications challenges
4
challenges solutions
4
solutions discovery
4

Similar Publications

Modeling, synthesis and cell-based evaluation of pyridine-substituted analogs of CD3254 and fluorinated analogs of CBt-PMN as novel therapeutics.

Bioorg Med Chem

January 2025

School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA. Electronic address:

Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay.

View Article and Find Full Text PDF

A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury.

Acta Pharm Sin B

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Macrophage-mediated inflammation plays a pivotal role in cardiovascular disease pathogenesis. However, current cell-based models lack a comprehensive understanding of crosstalk between macrophages and cardiomyocytes, hindering the discovery of effective therapeutic interventions. Here, a microfluidic model has been developed to facilitate the coculture of macrophages and cardiomyocytes, allowing for mapping key signaling pathways and screening potential therapeutic agents against inflammation-induced dynamic myocardial injury.

View Article and Find Full Text PDF

Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema.

Adv Healthc Mater

January 2025

Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX, 77843-3120, USA.

The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target.

View Article and Find Full Text PDF

Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer.

View Article and Find Full Text PDF

Injectable DAT-ALG Hydrogel Mitigates Senescence of Loaded DPMSCs and Boosts Healing of Perianal Fistulas in Crohn's Disease.

ACS Biomater Sci Eng

January 2025

Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.

Perianal fistulas (PAFs) are a severe complication of Crohn's disease that significantly impact patient prognosis and quality of life. While stem-cell-based strategies have been widely applied for PAF treatment, their efficacy remains limited. Our study introduces an injectable, temperature-controlled decellularized adipose tissue-alginate hydrogel loaded with dental pulp mesenchymal stem cells (DPMSCs) for in vivo fistula treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!