T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17-producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNgamma-producing Th1 cells are CCR6-. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6-/- mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900961 | PMC |
http://dx.doi.org/10.1681/ASN.2009070741 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!