We report on the fabrication and performances of a solid-phase microextraction (SPME) fiber based on a stainless steel wire coated with a covalently attached polyacrylonitrile (PAN)/multi-walled carbon nanotubes (MWCNTs) composite. This new coating is obtained by atom transfer radical polymerization (ATRP) of acrylonitrile mixed with MWCNTs. ATRP is initiated from 11-(2-bromo-2-methylpropionyloxy)-undecyl-phosphonic acid molecules grafted on the wire surface via the phosphonic acid group. The extraction performances of the fibers are assessed on different classes of compounds (polar, non-polar, aromatic, etc.) from water solutions by headspace extraction. The optimization of the parameters affecting the extraction efficiency of the target compounds was studied as well as the reproducibility and the repeatability of the fiber. The fibers sustain more than 200 extractions during which they remain chemically stable and maintain good performances (detection limits lower than 2 microg/l, repeatability, etc.). Considering their robustness together with their easy and inexpensive fabrication, these fibers could constitute promising alternatives to existing products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2010.02.030DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
atom transfer
8
transfer radical
8
radical polymerization
8
stainless steel
8
steel wire
8
solid-phase microextraction
8
preparation polyacrylonitrile/multi-walled
4
polyacrylonitrile/multi-walled carbon
4
nanotubes composite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!