A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Balanced Vav2 GEF activity regulates neurite outgrowth and branching in vitro and in vivo. | LitMetric

We have investigated the role of Vav2, a reported Rac1/Cdc42 GEF, on the development of Xenopus spinal neurons in vitro and in vivo. Both gain and loss of Vav2 function inhibited the rate neurite extension on laminin (LN), while only GFP-Vav2 over-expression enhanced process formation and branching. Vav2 over-expression protected neurons from RhoA-mediated growth cone collapse, similar to constitutively active Rac1, suggesting that Vav2 activates Rac1 in spinal neurons. Enhanced branching on LN required both Vav2 GEF activity and N-terminal tyrosine residues, but protection from RhoA-mediated collapse only required GEF activity. Interestingly, wild-type spinal neurons exhibited increased branching on the cell adhesion molecule L1, which required Vav2 GEF function, but not N-terminal tyrosine residues. Finally, we find that Vav2 differentially affects the Rohon-Beard peripheral and central process extension but promotes neurite branching of commissural interneurons near the ventral midline. Together, we suggest that balanced Vav2 activity is necessary for optimal neurite outgrowth and promotes branching by targeting GEF activity to branch points.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862809PMC
http://dx.doi.org/10.1016/j.mcn.2010.03.001DOI Listing

Publication Analysis

Top Keywords

gef activity
16
vav2 gef
12
spinal neurons
12
balanced vav2
8
neurite outgrowth
8
vitro vivo
8
vav2
8
required vav2
8
n-terminal tyrosine
8
tyrosine residues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!