Background: In the picture of a laboratory evolution experiment, to improve the thermostability whilst maintaining the activity requires of suitable procedures to generate diversity in combination with robust high-throughput protocols. The current work describes how to achieve this goal by engineering ligninolytic oxidoreductases (a high-redox potential laccase -HRPL- and a versatile peroxidase, -VP-) functionally expressed in Saccharomyces cerevisiae.
Results: Taking advantage of the eukaryotic machinery, complex mutant libraries were constructed by different in vivo recombination approaches and explored for improved stabilities and activities. A reliable high-throughput assay based on the analysis of T50 was employed for discovering thermostable oxidases from mutant libraries in yeast. Both VP and HRPL libraries contained variants with shifts in the T50 values. Stabilizing mutations were found at the surface of the protein establishing new interactions with the surrounding residues.
Conclusions: The existing tradeoff between activity and stability determined from many point mutations discovered by directed evolution and other protein engineering means can be circumvented combining different tools of in vitro evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847542 | PMC |
http://dx.doi.org/10.1186/1475-2859-9-17 | DOI Listing |
Acta Pharmacol Sin
January 2025
Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, China.
Patients suffering epilepsy caused by the gain-of-function mutants of the hKCNT1 potassium channels are drug refractory. In this study, we cloned a novel human KCNT1B channel isoform using the brain cDNA library and conducted patch-clamp and molecular docking analyses to characterize the pharmacological properties of the hKCNT1B channel using thirteen drugs. Among cinchona alkaloids, we found that hydroquinine exerted the strongest blocking effect on the hKCNT1B channel, especially the F313L mutant.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
McGill University Faculty of Medicine, Montréal, QC, Canada.
Purpose: MAP2K1/MEK1 mutations are potentially actionable drivers in cancer. MAP2K1 mutations have been functionally classified into three groups according to their dependency on upstream RAS/RAF signaling. However, the clinical efficacy of mitogen-activated protein kinase (MAPK) pathway inhibitors (MAPKi) for MAP2K1-mutant tumors is not well defined.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.
Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Centre for Bacterial Resistance Biology, Imperial College London, LondonSW7 2AZ, United Kingdom.
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.
View Article and Find Full Text PDFEven after folding, proteins transiently sample unfolded or partially unfolded intermediates, and these species are often at risk of irreversible alteration ( via proteolysis, aggregation, or post-translational modification). Kinetic stability, in addition to thermodynamic stability, can directly impact protein lifetime, abundance, and the formation of alternative, sometimes disruptive states. However, we have very few measurements of protein unfolding rates or how mutations alter these rates, largely due to technical challenges associated with their measurement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!