Orchestrating serine resolvases.

Biochem Soc Trans

Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th Street, Chicago, IL 60615, USA.

Published: April 2010

AI Article Synopsis

Article Abstract

A remarkable feature of the serine resolvases is their regulation: the wild-type enzymes will catalyse intra- but not inter-molecular recombination, can sense the relative orientation of their sites and can exchange strands directionally, despite the fact that there is no net release of chemical bond energy. The key to this regulation is that they are only active within a large intertwined complex called the 'synaptosome'. Because substrate topology greatly facilitates (or, in other cases, inhibits) formation of the synaptosome, it acts as a 'topological filter'. Within the defined topology of the synaptosome, strand exchange releases supercoiling tension, providing an energy source to bias the reaction direction. The regulatory portion of this complex contains additional copies of the recombinase and sometimes other DNA-bending proteins. We are using a combination of X-ray crystallography, biochemistry and genetics to model the full synaptic complex and to understand how the regulatory portion activates the crossover-site-bound recombinases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775659PMC
http://dx.doi.org/10.1042/BST0380384DOI Listing

Publication Analysis

Top Keywords

serine resolvases
8
regulatory portion
8
orchestrating serine
4
resolvases remarkable
4
remarkable feature
4
feature serine
4
resolvases regulation
4
regulation wild-type
4
wild-type enzymes
4
enzymes will
4

Similar Publications

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

To enable robust expression of transgenes in stem cells, recombinase-mediated cassette exchange at safe harbor loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta, and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells.

View Article and Find Full Text PDF

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

Mitigating genetic instability caused by the excision activity of the C31 integrase in .

Appl Environ Microbiol

December 2024

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

Over the past three decades, the integrase (Int) from phage C31 has become a valuable genome engineering tool across various species. C31 Int was thought to mediate unidirectional site-specific integration ( × to and ) in the absence of the phage-encoded recombination directionality factor (RDF). However, we have shown in this study that Int can also catalyze reverse excision ( × to and ) at low frequencies in and , causing genetic instability in engineered strains.

View Article and Find Full Text PDF
Article Synopsis
  • * Using single-molecule FRET (smFRET) techniques, researchers provided direct evidence of this subunit rotation mechanism, observing fluctuations in FRET that align with the proposed model.
  • * They measured rotation events in a timescale of 0.4-1.1 seconds, noting multiple recombination cycles and rapid rotation in the cleaved-DNA state without intermediate ligation during a ~25-second observation period.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!