A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mammalian arylsulfatase A functions as a novel component of the extracellular matrix. | LitMetric

Mammalian arylsulfatase A functions as a novel component of the extracellular matrix.

Connect Tissue Res

Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan.

Published: October 2010

Inherited deficiency for arylsulfatase (Ars) leads to lysosomal storage of sulfated compounds and to serious diseases such as growth retardation, heart failure, and demyelination in the central nervous system. Ars has been regarded as a lysosomal enzyme because of its hydrolytic activity on synthetic aromatic substrates and the lysosomal localization of its enzymatic activity. We previously demonstrated that a large portion of the mammalian arylsulfatase A (ArsA) protein exists on the cell surface of vascular endothelial cells, suggesting that ArsA plays a role in the components of the extracellular matrix. Here we show that ArsA functions as a substrate on which cells adhere and form protrusions. Coating culture plates with recombinant mouse ArsA (rmArsA) stimulates adhesion of human microvascular endothelial cells to the plate followed by the formation of cell protrusions as well as lamellipodia. rmArsA affects the architecture of the cytoskeleton, with a high density of actin filaments localized to peripheral regions of the cells and the extension of bundles of microtubules into the tips of cellular protrusions. rmArsA also affects the distribution pattern of the cell adhesion-associated proteins, integrin α2β1, and paxillin. rmArsA seems to modulate signaling of basic fibroblast growth factor (bFGF) stimulating cytoskeletal rearrangement. We also show that rmArsA tightly binds to sulfated polysaccharides. We suggest that mammalian ArsA plays a role as a novel component of the extracellular matrix. This viewpoint of Ars could be very useful for clarifying the mechanisms underpinning syndromes caused by the deficiency of the function of Ars genes.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03008200903537097DOI Listing

Publication Analysis

Top Keywords

extracellular matrix
12
mammalian arylsulfatase
8
novel component
8
component extracellular
8
endothelial cells
8
arsa plays
8
plays role
8
arsa
5
rmarsa
5
arylsulfatase functions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!