Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction.

J Am Chem Soc

Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

Published: April 2010

AI Article Synopsis

  • The study focuses on the synthesis of FePt/MgO nanoparticles (NPs) with controlled structures, particularly face-centered cubic (fcc) and face-centered tetragonal (fct) forms.
  • The MgO coating on the NPs can be easily removed, allowing for catalytic testing in oxygen reduction reactions (ORR) using 0.5 M H(2)SO(4) solution.
  • The fct-FePt NPs demonstrate superior catalytic activity and durability over the fcc-FePt NPs, suggesting that fully ordered fct-FePt can be an effective platinum-based catalyst for fuel cells.

Article Abstract

We report the structure-controlled synthesis of FePt/MgO NPs and their catalysis for oxygen reduction reaction (ORR) in 0.5 M H(2)SO(4) solution. The synthesis yields fcc-FePt/MgO and fct-FePt/MgO NPs with the MgO coating being readily removed for catalytic studies. The fct-FePt NPs show higher activity and durability than the fcc-FePt in the ORR condition. The results indicate that the fully ordered fct-FePt could serve as a practical Pt-based catalyst for fuel cell applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja1009629DOI Listing

Publication Analysis

Top Keywords

catalysis oxygen
8
oxygen reduction
8
reduction reaction
8
structurally ordered
4
ordered fept
4
fept nanoparticles
4
nanoparticles enhanced
4
enhanced catalysis
4
reaction report
4
report structure-controlled
4

Similar Publications

Steering acidic oxygen reduction selectivity of single-atom catalysts through the second sphere effect.

Nat Commun

December 2024

Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, China.

Natural enzymes feature distinctive second spheres near their active sites, leading to exquisite catalytic reactivity. However, incumbent synthetic strategies offer limited versatility in functionalizing the second spheres of heterogeneous catalysts. Here, we prepare an enzyme-mimetic single Co-N atom catalyst with an elaborately configured pendant amine group in the second sphere via 1,3-dipolar cycloaddition, which switches the oxygen reduction reaction selectivity from the 4e to the 2e pathway under acidic conditions.

View Article and Find Full Text PDF

Quenching peroxynitrite (a reactive oxidant species) is a vital process in biological systems and environmental chemistry as it maintains redox balance and mitigates damaging effects in living cells and the environment. In this study, we report a systematic analysis of the mechanism of transforming peroxynitrite into nitrate using diaryl selenide in water. Through quantum mechanical calculations, we investigate the dynamic isomerization of peroxynitrite in a homogeneous catalytic environment.

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.

View Article and Find Full Text PDF

Understanding Oxygen-Induced Reactions and Their Impact on n-Type Polymeric Mixed Conductor-Based Devices.

ACS Cent Sci

December 2024

Organic Bioelectronics Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electron transporting (n-type) polymeric mixed conductors are an exciting class of materials for devices with aqueous electrolyte interfaces, such as bioelectronic sensors, actuators, and soft charge storage systems. However, their charge transport performance falls short of their p-type counterparts, primarily due to electrochemical side reactions such as the oxygen reduction reaction (ORR). To mitigate ORR, a common strategy in n-type organic semiconductor design focuses on lowering the lowest unoccupied molecular orbital (LUMO) level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!