Download full-text PDF |
Source |
---|
Phys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.
View Article and Find Full Text PDFAdv Biol Regul
November 2024
Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address:
mBio
November 2024
Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.
Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Pharmacology, University of Washington, Seattle, WA, USA.
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!