[Subnuclear organization of genomes and gene regulation in the interphase nucleus].

Seikagaku

Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan.

Published: February 2010

Download full-text PDF

Source

Publication Analysis

Top Keywords

[subnuclear organization
4
organization genomes
4
genomes gene
4
gene regulation
4
regulation interphase
4
interphase nucleus]
4
[subnuclear
1
genomes
1
gene
1
regulation
1

Similar Publications

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures.

View Article and Find Full Text PDF
Article Synopsis
  • Liquid-liquid phase separation in the cell nucleus plays a key role in gene regulation, chromatin organization, and DNA repair processes.
  • The study utilized lipid-interacting RNA sequencing (LIPRNAseq) and confocal microscopy to explore the interaction of phosphatidylinositol 4,5 bisphosphate (PIP2) with specific RNA, identifying a PIP2-binding RNA motif and its colocalization with long non-coding RNA HANR in the perinucleolar compartment.
  • The findings suggest a link between PIP2, lncHANR, and oncogenic super-enhancers, indicating their potential as prognostic markers for cancer and highlighting the importance of understanding lipid metabolism and RNA interactions for future cancer treatment strategies.
View Article and Find Full Text PDF

The protein composition of human adenovirus replication compartments.

mBio

November 2024

Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico.

Human adenoviruses are double-stranded DNA viruses that replicate in the cell nucleus and induce the formation of replication compartments (RCs) that are critical in viral replication and control of virus-host interactions. RCs are specialized virus-induced subnuclear microenvironments where not only viral genome replication and expression are orchestrated but also host proteins that restrict viral replication are co-opted and subverted. The protein composition of these RCs remains largely unexplored.

View Article and Find Full Text PDF

Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!