The DNA binding properties of the MutL protein isolated from Escherichia coli.

Nucleic Acids Res

Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107.

Published: April 1991

The mutL gene of Escherichia coli, which is involved in the repair of mispaired and unpaired nucleotides in DNA, has been independently cloned and the gene product purified. In addition to restoring methyl-directed DNA repair in extracts prepared from mutL strains, the purified MutL protein binds to both double and single stranded DNA. The affinity constant of MutL for unmethylated single stranded DNA was twice that of its affinity constant for methylated single stranded DNA and methylated or unmethylated double stranded DNA. The binding of MutL to double stranded DNA was not affected by the pattern of DNA methylation or the presence of a MutHLS-repairable lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC333914PMC
http://dx.doi.org/10.1093/nar/19.7.1549DOI Listing

Publication Analysis

Top Keywords

stranded dna
20
single stranded
12
dna
9
dna binding
8
mutl protein
8
escherichia coli
8
dna affinity
8
affinity constant
8
double stranded
8
mutl
6

Similar Publications

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Systemic lupus erythematosus and pulmonary tuberculosis in a patient developing acute-onset type 1 diabetes.

Diabetol Int

January 2025

Department of Endocrinology and Diabetes, NTT Medical Center Tokyo, 141-86255-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo Japan.

A 73-year-old Japanese woman was admitted to our hospital with anorexia, weight loss, and fever. A few weeks prior to admission, she became aware of anorexia. She was leukopenic, complement-depleted, and positive for antinuclear antibodies and anti-double stranded DNA antibodies.

View Article and Find Full Text PDF

Position in proton Bragg curve influences DNA damage complexity and survival in head and neck cancer cells.

Clin Transl Radiat Oncol

March 2025

Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.

Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).

View Article and Find Full Text PDF

Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).

View Article and Find Full Text PDF

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!