Download full-text PDF |
Source |
---|
Food Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFNat Commun
January 2025
College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction.
View Article and Find Full Text PDFSmall
December 2024
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark.
Cooperative photobiocatalytic processes have seen extensive potentials for the synthesis of both bulk and fine chemicals owing to their versatility, eco-friendliness, and cost-effectiveness. Nevertheless, developing a universal and effective synthetic strategy compatible with both catalytic systems remains challenging. In this study, we explored cationic liposomes as biocompatible photocatalyst encapsulation systems and combined them with bacteria overexpressing enzymes for two-step and three-step cascade reactions.
View Article and Find Full Text PDFChem Sci
November 2024
State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
Xanthone-based polyketides with complex molecular frameworks and potent bioactivities distribute and function in different biological kingdoms, yet their biosynthesis remains under-investigated. In particular, nothing is known regarding how to switch between the C-C (C-selective) and C-C bond (C-selective) cleavages of anthraquinone intermediates involved in biosynthesizing strikingly different frameworks of xanthones and their siblings. Enabled by our characterization of antiosteoporotic brunneoxanthones, a subfamily of polyketides from FB-2, we present herein the brunneoxanthone biosynthetic gene cluster and the C-selective cleavage of anthraquinone (chrysophanol) hydroquinone leading ultimately to the bioactive brunneoxanthones under the catalysis of BruN (an undescribed atypical non-heme iron dioxygenase) in collaboration with BruM as a new oxidoreductase that reduces the anthraquinone into its hydroquinone using NADPH as a cofactor.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China.
The development of robust and inexpensive photocatalysts for H production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (RN)CuL (R = ethyl, L = alizarin dianion (CuAA); R = -butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!