The importance of compartmentalization in metabolic flux models: yeast as an ecosystem of organelles.

Genome Inform

Graduate Program in Bioinformatics, Boston University, Boston, MA 02215, USA.

Published: January 2010

Understanding the evolution and dynamics of metabolism in microbial ecosystems is an ongoing challenge in microbiology. A promising approach towards this goal is the extension of genome-scale flux balance models of metabolism to multiple interacting species. However, since the detailed distribution of metabolic functions among ecosystem members is often unknown, it is important to investigate how compartmentalization of metabolites and reactions affects flux balance predictions. Here, as a first step in this direction, we address the importance of compartmentalization in the well characterized metabolic model of the yeast Saccharomyces cerevisiae, which we treat as an "ecosystem of organelles". In addition to addressing the impact that the removal of compartmentalization has on model predictions, we show that by systematically constraining some individual fluxes in a de-compartmentalized version of the model we can significantly reduce the flux prediction errors induced by the removal of compartments. We expect that our analysis will help predict and understand metabolic functions in complex microbial communities. In addition, further study of yeast as an ecosystem of organelles might provide novel insight on the evolution of endosymbiosis and multicellularity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

yeast ecosystem
8
ecosystem organelles
8
flux balance
8
metabolic functions
8
compartmentalization
4
compartmentalization metabolic
4
flux
4
metabolic flux
4
flux models
4
models yeast
4

Similar Publications

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

Genome-wide identification and characterization of alfalfa-specific genes in drought stress tolerance.

Plant Physiol Biochem

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:

Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.

View Article and Find Full Text PDF

Inflammatory diseases of the human gastrointestinal tract are affected by the microbes that reside in the mucosal surfaces. Patients with inflammatory bowel diseases (IBD) have altered bacterial and fungal intestinal compositions, including higher levels of fecal Candida yeasts. Ongoing research indicates that genetic and phenotypic diversity of Candida albicans may be linked with disease severity.

View Article and Find Full Text PDF

SRPKs Homolog Dsk1 Regulates Homologous Recombination Repair in Schizosaccharomyces pombe.

Genes Cells

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, Nanjing, China.

Serine-arginine protein kinases (SRPKs) play important roles in diverse biological processes such as alternative splicing and cell cycle. However, the functions of SRPKs in DNA damage response remain unclear. Here we characterized the function of SRPKs homolog Dsk1 in regulating DNA repair in the fission yeast Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!