The study aimed to examine the tolerability of the combination of radiotherapy and tamoxifen and the effect on median and event free survival as well as collecting data on the use of steroids in this population. 31 patients with diffuse intrinsic pontine glioma, diagnosed on clinical and radiological criteria, were treated with high-dose oral tamoxifen (120 mg/m(2)/day) given concomitantly with standard dose radiotherapy (54 Gy in 1.8 Gy fractions over 6 weeks). Results Tamoxifen was well tolerated with no grade 3 or 4 CTC toxicity reported. At 1 year, the progression free and event free survival were 3.2% (95% CI: 0.2-14.1%), and at 6 months 19.4% (CI: 7.9% to 34.6%). The overall survival at 1 year was 16.1% (CI: 5.9-30.9%) with median survival 6.32 months. In this study, in which tamoxifen was used in conjunction with radiotherapy, progression free survival was shown to be less good when compared with historical data HR = 3.1 (CI: 1.7-5.7). There was no significant reduction in overall survival. The addition of high-dose tamoxifen, although well tolerated, confers no clinical benefit to patients treated with diffuse intrinsic pontine glioma treated with standard radiotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-010-0141-9DOI Listing

Publication Analysis

Top Keywords

diffuse intrinsic
12
intrinsic pontine
12
pontine glioma
12
free survival
12
addition high-dose
8
high-dose tamoxifen
8
standard radiotherapy
8
patients diffuse
8
event free
8
tamoxifen well
8

Similar Publications

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

Article Synopsis
  • The study focuses on creating effective and affordable electrocatalysts for water electrolysis, vital for improving technology in this area.
  • The authors developed a novel catalyst by anchoring carbonyl iron powder in nickel foam, leading to enhanced surface area and efficient ion movement.
  • The catalyst exhibits high activity due to a dynamic interaction between different nickel and iron phases, significantly boosting its performance in the oxygen evolution reaction.
View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Mn-containing sodium superionic conductor (NASICON) compounds have shown considerable potential as cathode for sodium-ion batteries (SIBs) owing to higher working voltage (V/V: 3.9 V), lower cost, and lower toxicity compared to full vanadium-based NASICON NaV(PO). Taking NaVMn(PO) (NVMP) as an example, its practical application is still restricted by poor electronic conductivity, sluggish intrinsic Na diffusion, and poor high-voltage stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!