MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression at the post-transcriptional level. Recent studies indicate that miRNAs may constitute a major mechanism underlying mammal's retinal development. The overall objective of this study is to compare and contrast retinal miRNAs expression between newborn and adult rabbits, and to identify some of the genes possibly associated with retinal development. Retinas were isolated from 3-day-old and 2-month-old rabbits. A miRNA microarray designed to detect 924 miRNAs was used to determine the expression profile of miRNAs from newborn and adult rabbits. The expression of twenty-eight miRNAs was found to differ significantly between newborn and adult rabbit retina. Among these, 17 appear to be up-regulated and the other 11 miRNAs down-regulated, suggesting a role of differential miRNA expression in retinal development. Computer prediction tools indicate that some of the target genes might be directly associated with signal pathways relevant to visual development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4419-1399-9_23 | DOI Listing |
Sci Adv
January 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
Glaucoma Service, Wills Eye Hospital, Philadelphia, PA, USA.
Purpose: The integration of artificial intelligence (AI), particularly deep learning (DL), with optical coherence tomography (OCT) offers significant opportunities in the diagnosis and management of glaucoma. This article explores the application of various DL models in enhancing OCT capabilities and addresses the challenges associated with their clinical implementation.
Methods: A review of articles utilizing DL models was conducted, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, and large language models (LLMs).
Invest Ophthalmol Vis Sci
January 2025
Biology and Biochemistry PhD Programs, Graduate Center, City University of New York, New York, New York, United States.
Purpose: Retinal development in the mouse continues past birth and provides a widely used model system in which photoreceptor formation can be observed and manipulated. This experimental paradigm provides opportunities for both gain-of-function and loss-of-function studies, which can be accomplished through in vivo or ex vivo plasmid delivery and electroporation. However, the cis-regulatory elements used to implement this approach have not been fully evaluated or optimized for the unique transcriptional environment of photoreceptors.
View Article and Find Full Text PDFJ Vis
January 2025
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.
View Article and Find Full Text PDFActa Parasitol
January 2025
Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.
Purpose: Since extract of the laminated layer (LL) from E. granulosus showed immuno-modulatory effects in vitro and in vivo, we sought to determine its effect on the onset, development, and evolution of experimental auto-immune uveitis (EAU). The latter is a model of some human diseases with ocular inflammation that can cause blindness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!