Long terminal repeat retrotransposons are the most abundant mobile elements in the plant genome and play an important role in the genome reorganization induced by environmental challenges. Their success depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic stresses. We have isolated a new Ty1-copia-like retrotransposon, named Ttd1a from the Triticum durum L. genome. To get insight into stress activation pathways in Ttd1a, we investigated the effect of salt and light stresses by RT-PCR and S-SAP profiling. We screened for Ttd1a insertion polymorphisms in plants grown to stress and showed that one new insertion was located near the resistance gene. Our analysis showed that the activation and mobilization of Ttd1a was controlled by salt and light stresses, which strengthened the hypothesis that stress mobilization of this element might play a role in the defense response to environmental stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-010-1311-zDOI Listing

Publication Analysis

Top Keywords

salt light
12
light stresses
12
play role
8
stresses
5
polymorphism ty1-copia
4
ty1-copia retrotransposon
4
retrotransposon durum
4
durum wheat
4
wheat salt
4
stresses long
4

Similar Publications

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Solventless Dual-Cure Liquid Resins Via Circular Use of Phthalic Anhydride for Recyclable Composite Applications.

Macromol Rapid Commun

January 2025

Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.

Fiber-reinforced composites (FRCs) possess a remarkable strength-to-weight ratio, making them ideal light-weighing alternative materials of metals used in automotive, aerospace, and outdoor equipment applications, but their recycling is challenging. Chemically recyclable thermoset polymers can enable fiber recovery and reuse; however, challenges remain in the separation and purification of depolymerized small molecules for efficient polymer recycling. To this end, a series of liquid resins for chemically recyclable polymer networks is designed based on phthalic anhydride, a widely produced and inexpensive chemical.

View Article and Find Full Text PDF

Bubble coalescence principle in saline water.

Proc Natl Acad Sci U S A

February 2025

School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.

Bubbles present in saline water typically exhibit a prolonged lifetime, making them attractive for various engineering processes. Herein, we unveil a transition from delayed bubble coalescence to rapid bursting within about one millisecond in salty solutions. The key aspect in understanding this transition lies in the combined influences of surface deformation and ion surface excess instead of characterizing the ions alone.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Interfacial solar vapor generation (ISVG) accompanied by photocatalytic degradation holds immense potential to mitigate water scarcity and pollution. Distinct from the two detached functional components (photothermal agent and photocatalyst) in a conventional evaporator, in this study, an all-in-one photothermal/catalytic agent, nitrogen-containing honeycomb carbon nanosheets (NHC), was engineered for synergistic high-efficiency steam generation and photocatalysis functions. It was demonstrated that the superoxide radical generated on the surface of NHC conferred its catalytic activity to the photodegradation of organic pollutants under full solar spectrum irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!