Interaction of CH4 and H2O in ice mixtures.

Phys Chem Chem Phys

Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain.

Published: April 2010

AI Article Synopsis

  • The study examines ice mixtures of methane and water using infrared (IR) spectroscopy at temperatures between 14-60 K, focusing on specific vibrational bands of methane and water.
  • The presence of distorted methane structures, alongside normal crystalline forms, is detected, with changes in water’s dangling bond bands indicating interactions caused by this distorted methane.
  • The research also explores how methane mobility within water ice is influenced by the sample preparation method and temperature, finding that some methane remains in the ice even after warming to 60 K, with adsorption measurements providing insights into its desorption energy on the water surface.

Article Abstract

Ice mixtures of methane and water are investigated by means of IR spectroscopy in the 14-60 K range. The spectroscopic research is focused on the symmetry-forbidden nu(1) band of CH(4) and the dangling bond bands of water. The nu(1) band is visible in the spectra of the mixtures, revealing a distorted methane structure which co-exists with the normal crystalline methane. The water dangling bond bands are found to increase their intensity and appear at red-shifted frequency when distorted methane is present. Methane adsorbed on water micropores or trapped inside the amorphous solid water structure is assumed to be responsible for these effects. CH(4) mobility in water ice depends on the deposition method used to prepare the samples and on the temperature. After warming the samples to 60 K, above the methane sublimation point, a fraction of CH(4) is retained in the water ice. An adsorption isotherm analysis is performed yielding the estimation of the desorption energy of CH(4) on H(2)O amorphous surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b922598fDOI Listing

Publication Analysis

Top Keywords

ch4 h2o
8
ice mixtures
8
methane water
8
nu1 band
8
dangling bond
8
bond bands
8
distorted methane
8
water ice
8
water
7
methane
6

Similar Publications

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

A Fluorine-Functionalized Tb(III)-Organic Framework for Ba Detection.

Molecules

December 2024

School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China.

The development of lanthanide-organic frameworks (Ln-MOFs) using for luminescence sensing and selective gas adsorption applications is of great significance from an energy and environmental perspective. This study reports the solvothermal synthesis of a fluorine-functionalized 3D microporous Tb-MOF with a face-centered cubic () topology constructed from hexanuclear clusters (TbO) bridged by fdpdc ligands, formulated as {[Tb(fdpdc)(-OH)(HO)]·4DMF} (), (fdpdc = 3-fluorobiphenyl-4,4'-dicarboxylate). Complex displays a 3D framework with the channel of 7.

View Article and Find Full Text PDF

Unveiling the Dissociation Mechanism of Diglycine Perchlorate.

Inorg Chem

January 2025

High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.

Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.

View Article and Find Full Text PDF

The adsorption of small organic molecules on pristine VC MXene and its derivatives is investigated by first-principles density functional theory calculations. By employing state-of-the-art van der Waals (vdW) density functionals, the binding affinity of studied molecules, , CH, CO, and HO on MXene adsorbents is well described by more recent vdW functionals, , SCAN-rvv10. Although both CH and CO are nonpolar molecules, on pristine and oxygen-vacancy surfaces, they show a different range of adsorption energies, in which CH is more inert and has weaker binding than CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!