A simple method was used to predict binding sites and to calculate the binding free energy for a xenon atom on a protein to determine the importance of the translational motion of water molecules in molecular recognition. We examined xenon bound on myoglobin and on a fragment of ammonium transporter. Despite the simplicity of our method, the predicted binding sites and the experimental results agree very well, and the estimated values of the free energy gain are also reasonable. We discuss the van der Waals picture of molecular recognition between a protein and a small hydrophobic molecule, such as an anesthetic molecule, which gives us a simple physical justification for the idea of a "lock and key" relationship used in conventional structure-based drug design programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b921314g | DOI Listing |
In living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.
View Article and Find Full Text PDFAnn Rheum Dis
January 2025
Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA. Electronic address:
Objectives: This study aims to elucidate the microbial signatures associated with autoimmune diseases, particularly systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD), compared with colorectal cancer (CRC), to identify unique biomarkers and shared microbial mechanisms that could inform specific treatment protocols.
Methods: We analysed metagenomic datasets from patient cohorts with six autoimmune conditions-SLE, IBD, multiple sclerosis, myasthenia gravis, Graves' disease and ankylosing spondylitis-contrasting these with CRC metagenomes to delineate disease-specific microbial profiles. The study focused on identifying predictive biomarkers from species profiles and functional genes, integrating protein-protein interaction analyses to explore effector-like proteins and their targets in key signalling pathways.
J Sleep Res
January 2025
Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky, USA.
The neuronal ceroid lipofuscinoses (NCLs) are a group of recessively inherited neurodegenerative diseases characterizsed by lysosomal storage of fluorescent materials. CLN3 disease, or juvenile Batten disease, is the most common NCL that is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene. Sleep disturbances are among the most common symptoms associated with CLN3 disease that deteriorate the patients' life quality, yet this is understudied and has not been delineated in animal models of the disease.
View Article and Find Full Text PDFExp Physiol
January 2025
Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK.
Fenestrated/branched endovascular aortic repair emerges as the primary therapeutic modality for intricate aortic pathologies encompassing the paravisceral and thoracoabdominal segments, where bridging stent grafts (BSGs) play a vital role in linking the primary aortic endograft with target vessels. Bridging stent grafts can be categorized mainly into self-expanding stent grafts (SESGs) and balloon-expandable stent grafts (BESGs). Physiological factors significantly influence post-complex endovascular aortic repair BSG behaviour, impacting clinical outcomes of SESGs and BESGs in different but overlapping ways.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!