Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b919830jDOI Listing

Publication Analysis

Top Keywords

integrated one-step
8
one-step system
8
crude images
8
cytological features
8
system extract
4
extract analyze
4
analyze annotate
4
annotate relevant
4
relevant image-based
4
image-based cell
4

Similar Publications

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.

View Article and Find Full Text PDF

Introduction: Implantation of minced cartilage is a one-step-procedure that leads to satisfactory results in osteochondral defects.

Material And Methods: A retrospective review was performed on a consecutive cohort of patients that received minced cartilage with fibrin (MCF), minced cartilage with membrane and fibrin (MCMF) and minced cartilage with the "AutoCart"-procedure (MCAC) between January 2019 and December 2023. Radiological outcome parameters were evaluated via Magnet-Resonance-Tomography (MRI) within one year using Ankle-Osteoarthritis-Scoring-System (AOSS).

View Article and Find Full Text PDF

Simultaneous regulation of grain size and interface of single-crystal ultrahigh-nickel LiNiCoMnO via one-step LiZrO coating.

J Colloid Interface Sci

January 2025

Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Lab of Fine Ceramics, Tsinghua University, Beijing 100084, China. Electronic address:

Single-crystal ultrahigh-nickel LiNiCoMnO (NCM) materials are recognized for significant potential in the development of high-performance lithium-ion batteries, primarily owing to their higher energy density and superior cycling performance compared to polycrystalline counterparts. However, these materials require high calcination temperatures, suffer from significant lithium/nickel mixing, and face challenges in composition control. Although high-activity oxide precursors prepared via spray pyrolysis can reduce calcination temperatures, the smaller particle size of the resulting NCM materials intensifies interfacial side reactions.

View Article and Find Full Text PDF

The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!