We tested the hypothesis that hypertrophic muscle growth in decapod crustaceans is associated with increases in both the number of nuclei per fiber and nuclear DNA content. The DNA-localizing fluorochrome DAPI (4',6-diamidino-2-phenylindole) and chicken erythrocyte standards were used with static microspectrophotometry and image analysis to estimate nuclear DNA content in hemocytes and muscle fibers from eight decapod crustacean species: Farfantepenaeus aztecus, Palaemonetes pugio, Panulirus argus, Homarus americanus, Procambarus clarkii, Cambarus bartonii, Callinectes sapidus, and Menippe mercenaria. Mean diploid (2C) values in hemocytes ranged from 3.6 to 11.7 pg. Hemocyte 2C estimates were used to extrapolate ploidy level in the multinucleated skeletal muscle tissue of juvenile and adult animals. Across all species, mean muscle fiber diameters from adult animals were significantly larger than those in juveniles, and nuclear domains were greater in larger fibers. The number of nuclei per fiber increased with increasing fiber size, as hypothesized. Maximum nuclear DNA content per species in muscle ranged from 4C to 32C, consistent with endopolyploidy. Two patterns of body- and fiber-size-dependent shifts in ploidy were observed: four species had a significantly higher ploidy in the larger fibers of adults, while three species exhibited a significantly lower ploidy in adults than in juveniles. Thus, across species, there was no systematic relationship between nuclear domain size and nuclear DNA content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/g09-095 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Agriculture and Bioengineering, Heze University, Heze 274500, China. Electronic address:
Herin, the successful synthesis of a bis Schiff base (L) has been achieved using 2-hydroxy-1-naphthaldehyde and 1,3-diaminoguanidine as raw materials, which was further characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance hydrogen spectrum. Moreover, spectroscopic experiments demonstrated that the probe L showed good selectivity and visual detectability for Al. Its detection limit (DL) is 2.
View Article and Find Full Text PDFDev Biol
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.
View Article and Find Full Text PDFPhytomedicine
December 2024
Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China. Electronic address:
Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.
In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!