The phenomenon of thermal diffusion (mass diffusion driven by a temperature gradient, known as the Ludwig-Soret effect) has been investigated for over 150 years, but an understanding of its underlying physical basis remains elusive. A significant hurdle in studying thermal diffusion has been the difficulty of characterizing it. Extensive experiments over the past century have established that the Soret coefficient, S(T) (a single parameter that describes the steady-state result of thermal diffusion), is highly sensitive to many factors. This sensitivity makes it very difficult to obtain a robust characterization of thermal diffusion, even for a single material. Here we show that for thermal diffusion experiments that span a wide range in composition and temperature, the difference in S(T) between isotopes of diffusing elements that are network modifiers (iron, calcium and magnesium) is independent of the composition and temperature. On the basis of this finding, we propose an additive decomposition for the functional form of S(T) and argue that a theoretical approach based on local thermodynamic equilibrium holds promise for describing thermal diffusion in silicate melts and other complex solutions. Our results lead to a simple and robust framework for characterizing isotope fractionation by thermal diffusion in natural and synthetic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature08840DOI Listing

Publication Analysis

Top Keywords

thermal diffusion
32
diffusion
9
isotope fractionation
8
silicate melts
8
thermal
8
composition temperature
8
fractionation silicate
4
melts thermal
4
diffusion phenomenon
4
phenomenon thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!