17Beta-estradiol enhances leptin expression in human placental cells through genomic and nongenomic actions.

Biol Reprod

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Published: July 2010

The process of embryo implantation and trophoblast invasion is considered the most limiting factor in the establishment of pregnancy. Leptin was originally described as an adipocyte-derived signaling molecule for the central control of metabolism. However, it has been suggested that leptin is involved in other functions during pregnancy, particularly in the placenta, where it was found to be expressed. In the present work, we have found a stimulatory effect of 17beta-estradiol (E(2)) on endogenous leptin expression, as analyzed by Western blot, in both the BeWo choriocarcinoma cell line and normal placental explants. This effect was time and dose dependent. Maximal effect was achieved at 10 nM in BeWo cells and 1 nM in placental explants. The E(2) effects involved the estrogen receptor, as the antagonist ICI 182 780 inhibited E(2)-induced leptin expression. Moreover, E(2) treatment enhanced leptin promoter activity up to 4-fold, as evaluated by transient transfection with a plasmid construction containing the leptin promoter region and the reporter gene luciferase. This effect was dose dependent. Deletion analysis demonstrated that a minimal promoter region between -1951 and -1847 bp is both necessary and sufficient to achieve E(2) effects. Estradiol action involved estrogen receptor 1, previously known as estrogen receptor alpha, as cotransfection with a vector encoding estrogen receptor 1 potentiated the effects of E(2) on leptin expression. Moreover, E(2) action probably involves membrane receptors too, as treatment with an estradiol-bovine serum albumin complex partially enhanced leptin expression. The effects of E(2) could be blocked by pharmacologic inhibition of MAPK and the phosphoinositide-3-kinase (PI3K) pathways with 50 microM PD98059 and 0.1 microM Wortmannin, respectively. Moreover, cotransfection of dominant negative mutants of MAP2K or MAPK blocked E(2) induction of leptin promoter. On the other hand, E(2) treatment promoted MAPK1/MAPK3 and AKT phosphorylation in placental cells. In conclusion, we provide evidence suggesting that E(2) induces leptin expression in trophoblastic cells, probably through genomic and nongenomic actions via crosstalk between estrogen receptor 1 and MAPK and PI3K signal transduction pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.110.083535DOI Listing

Publication Analysis

Top Keywords

leptin expression
24
estrogen receptor
20
leptin promoter
12
leptin
11
placental cells
8
cells genomic
8
genomic nongenomic
8
nongenomic actions
8
placental explants
8
dose dependent
8

Similar Publications

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.

View Article and Find Full Text PDF

Gut Microbiota-Bone Axis.

Ann Nutr Metab

January 2025

Department of Translational Medical Science, University of Naples Federico II, Napoli, Italy.

Background: Knowledge of the complex interplay between gut microbiota and human health is gradually increasing as it has just recently been a field of such great interest.

Summary: Recent studies have reported that communities of microorganisms inhabiting the gut influence the immune system through cellular responses and shape many physiological and pathophysiological aspects of the body, including muscle and bone metabolism (formation and resorption). Specifically, the gut microbiota affects skeletal homeostasis through changes in host metabolism, the immune system, hormone secretion, and the gut-brain axis.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) and obesity are critical global health issues with rising incidence rates. Glucagon-like peptide-1 (GLP-1) analogues have emerged as effective treatments due to their ability to regulate blood glucose levels and gastric emptying through central nervous signals involving hypothalamic receptors, such as leptin. To address the short plasma half-life of native GLP-1, a C-16 fatty acid was conjugated to lysine in the GLP-1 analogue sequence to enhance its longevity.

View Article and Find Full Text PDF

The bone marrow (BM) niche is critical in regulating hematopoiesis, and sexual dimorphism and its underlying mechanism in BM niche and its impact on hematopoiesis are not well understood. We show that male mice exhibited a higher abundance of leptin-receptor-expressing mesenchymal stromal cells (LepR-MSCs) compared to female mice. Sex-mismatched co-culture and BM transplantation showed that the male BM niche provided superior support for in vitro colony formation and in vivo hematopoietic engraftment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!