Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1). Elevated expression of vascular endothelial growth factor (VEGF) in ATL patients is associated with leukemic cell invasion and infiltration in different organs. The regulatory protein Tax 1 encoded by HTLV-1 plays a pivotal role in T-cell transformation by deregulating the function and expression of several cellular factors. In the present study, we examined the effect of Tax 1 on VEGF expression at transcriptional and posttranscriptional levels in order to elucidate the regulatory mechanisms involved. Using functional assays, we demonstrate that Tax 1 downregulates the VEGF promoter through a cluster of Sp1 sites located close to the transcriptional start site. Using gel mobility shift assays, we show that Tax 1 reduced Sp1:DNA complex formation. We demonstrate that the level of secreted VEGF was significantly lower in Tax 1-transfected 293T cells compared to nontransfected cells, which is consistent with the observed downregulatory effect of Tax 1 at the transcription level. We showed that VEGF was secreted by HTLV-1-transformed and nontransformed cells, irrespective of Tax 1 expression. Overall our data indicate that, contrary to a previous report, Tax 1 downregulates VEGF expression and suggest there are Tax 1-independent mechanisms of VEGF activation in ATL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863836 | PMC |
http://dx.doi.org/10.1128/JVI.02166-09 | DOI Listing |
Viruses
January 2025
Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.
View Article and Find Full Text PDFMolecules
January 2025
Center for Instrumental Analysis, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
[...
View Article and Find Full Text PDFCancers (Basel)
January 2025
Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA.
Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Medigene Immunotherapies GmbH, 82152 Planegg-Martinsried, Germany.
Background/objectives: MDG1011 is an autologous TCR-T therapy developed as a treatment option for patients with myeloid malignancies, including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and multiple myeloma (MM). It is specific for the target antigen PReferentially expressed Antigen in MElanoma (PRAME). The recombinant TCR used in MDG1011 recognizes PRAME VLD-peptide presented by HLA-A*02:01-encoded surface molecules.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
Background: The benefit of universal CAR-T cells over autologous CAR-T cell therapy is that they are a treatment that is ready to use. However, the prevention of graft-versus-host disease (GVHD) and host-versus-graft reaction (HVGR) remains challenging. Deleting class I of human leukocyte antigen (HLA-I) and class II of human leukocyte antigen (HLA-II) can prevent rejection by allogeneic T cells; however, natural killer (NK) cell rejection due to the loss of self-recognition remains unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!