AMP-activated protein kinase (AMPK) is an important cellular energy sensor that is responsible for maintaining systemic and cellular energy balance. Its role in intestinal inflammation remains unclear. Recent studies indicate that AMPK activation initiated by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) participates in modulating inflammatory responses. Inflammatory bowel disease (IBD) has been characterized by sustained intestinal mucosa inflammation, caused mainly by excessive macrophage activation and T helper type 1 (Th1) and Th17 immune responses. Thus, we sought to determine the effect of AICAR on inflammatory responses of murine models of IBD. Mice with acute or chronic colitis induced by dextran sulfate sodium (DSS) were treated with or without AICAR. Body weight and colon inflammation were evaluated, and production of proinflammatory cytokines in colon tissues was determined. Nuclear factor kappaB (NF-kappaB) activation in colon tissues was assayed, and Th1 and Th17 cell responses were also evaluated. By inducing AMPK activation, AICAR had a therapeutic effect in ameliorating acute and chronic DSS-induced murine colitis as shown by reduced body weight, loss and significant attenuation in clinical symptoms, and histological inflammation. Moreover, AICAR treatment inhibited NF-kappaB activation in macrophages, reduced levels of Th1- and Th17-type cytokines in colon tissues, and down-regulated Th1 and Th17 cell responses during the progress of acute and chronic experimental colitis. AICAR acts as a central inhibitor in immune responses of experimental colitis. Our data show that AICAR-initiated AMPK activation may represent a promising alternative to our current approaches to suppress intestinal inflammation in IBD.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.109.164954DOI Listing

Publication Analysis

Top Keywords

acute chronic
16
ampk activation
12
th1 th17
12
colon tissues
12
5-aminoimidazole-4-carboxamide ribonucleoside
8
dextran sulfate
8
chronic colitis
8
cellular energy
8
intestinal inflammation
8
inflammatory responses
8

Similar Publications

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

Background: Heart failure (HF) significantly impacts healthcare systems due to high rates of hospital bed utilization and readmission rates. Chronic HF often leads to frequent hospitalizations due to recurrent exacerbations and a decline in patient health status. Intravenous (IV) diuretic administration is essential for treating worsening HF.

View Article and Find Full Text PDF

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) has been considered as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the potential of using OGA inhibition to treat neurodegenerative diseases. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using the OGA inhibitor Thiamet G (TG), in normal mouse brains.

View Article and Find Full Text PDF

Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8 T cell fates in cancer, drawing on insights from acute and chronic viral infection models.

View Article and Find Full Text PDF

Background: Chronic schistosomiasis causes multiple organ and multiple system diseases, especially the digestive system. Schistosome eggs are mainly deposited in the stomach, liver and colorectal, but a few eggs are deposited in the appendix and cause disease. At present, there are few studies on schistosomal appendicitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!