Sparse array 3-D ISAR imaging based on maximum likelihood estimation and CLEAN technique.

IEEE Trans Image Process

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077.

Published: August 2010

AI Article Synopsis

  • Large 2-D sparse arrays produce high-resolution microwave images, but the presence of high sidelobes creates artifacts that reduce dynamic range.
  • The paper proposes using the CLEAN technique for removing these artifacts, although it acknowledges that the traditional DFT method for estimating signal amplitudes is not very effective.
  • Instead, it combines DFT for initial estimates with a maximum likelihood estimation method to improve accuracy and uses time domain information to lessen sidelobe effects, demonstrating improved results in numerical simulations.

Article Abstract

Large 2-D sparse array provides high angular resolution microwave images but artifacts are also induced by the high sidelobes of the beam pattern, thus, limiting its dynamic range. CLEAN technique has been used in the literature to extract strong scatterers for use in subsequent signal cancelation (artifacts removal). However, the performance of DFT parameters estimation based CLEAN algorithm for the estimation of the signal amplitudes is known to be poor, and this affects the signal cancelation. In this paper, DFT is used only to provide the initial estimates, and the maximum likelihood parameters estimation method with steepest descent implementation is then used to improve the precision of the calculated scatterers positions and amplitudes. Time domain information is also used to reduce the sidelobe levels. As a result, clear, artifact-free images could be obtained. The effects of multiple reflections and rotation speed estimation error are also discussed. The proposed method has been verified using numerical simulations and it has been shown to be effective.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2010.2045711DOI Listing

Publication Analysis

Top Keywords

sparse array
8
maximum likelihood
8
clean technique
8
signal cancelation
8
parameters estimation
8
estimation
5
array 3-d
4
3-d isar
4
isar imaging
4
imaging based
4

Similar Publications

Association of Hepatic Gene Expression with Chemical Concentrations in Wild-Collected Double-Crested Cormorant Embryos using an EcoToxChip Gene Array.

Environ Sci Technol

December 2024

Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

Contaminant monitoring programs use wild bird eggs, but determining whether measured concentrations elicit adverse effects relies on extrapolation from toxicity studies with avian model species. Here, we directly evaluated the relationships between whole embryo contaminant concentrations and mRNA expression in liver tissue of the double-crested cormorant (). Eggs collected from three North American sites (one from Lake Erie and two from the Salish Sea) were artificially incubated until pipping.

View Article and Find Full Text PDF

Association of exposure to second-hand smoke during childhood with blood DNA methylation.

Environ Int

December 2024

ISGlobal, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; Centro de investigación biomédica en red en epidemiología y salud pública (CIBERESP), Madrid, Spain.

Introduction: By recent estimates, 40% of children worldwide are exposed to second-hand smoke (SHS), which has been associated with adverse health outcomes. While numerous studies have linked maternal smoking during pregnancy (MSDP) to widespread differences in child blood DNA methylation (DNAm), research specifically examining postnatal SHS exposure remains sparse. To address this gap, we conducted epigenome-wide meta-analyses to identify associations of postnatal SHS and child blood DNAm.

View Article and Find Full Text PDF

Hardware Implementation for Triaxial Contact-Force Estimation from Stress Tactile Sensor Arrays: An Efficient Design Approach.

Sensors (Basel)

December 2024

Programa de Doctorado en Ingeniería Mecatrónica, Departamento de Electrónica, Universidad de Málaga, 29071 Malaga, Spain.

This paper presents a contribution to the state of the art in the design of tactile sensing algorithms that take advantage of the characteristics of generalized sparse matrix-vector multiplication to reduce the area, power consumption, and data storage required for real-time hardware implementation. This work also addresses the challenge of implementing the hardware to execute multiaxial contact-force estimation algorithms from a normal stress tactile sensor array on a field-programmable gate-array development platform, employing a high-level description approach. This paper describes the hardware implementation of the proposed sparse algorithm and that of an algorithm previously reported in the literature, comparing the results of both hardware implementations with the software results already validated.

View Article and Find Full Text PDF

A comprehensive review of metasurface-assisted direction-of-arrival estimation.

Nanophotonics

November 2024

Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.

Article Synopsis
  • Direction of Arrival (DoA) estimation is a critical area in array signal processing, with advancements in algorithms being driven by new metasurface technology and artificial intelligence.
  • The study reviews the integration of traditional DoA algorithms with metasurfaces and explores the use of subspace and sparse representation methods to improve wave detection capabilities.
  • Lastly, it highlights the challenges and opportunities that arise from merging metasurfaces and AI to enhance DoA detection and hardware implementation.
View Article and Find Full Text PDF

Hazard models are the most commonly used tool to analyze time-to-event data. If more than one time scale is relevant for the event under study, models are required that can incorporate the dependence of a hazard along two (or more) time scales. Such models should be flexible to capture the joint influence of several time scales, and nonparametric smoothing techniques are obvious candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!