Aims: While powerful in silico tools are emerging for predicting drug targets and pathways, general in vitro tools for assessing such predictions are lacking. We present a novel in vitro method for distinguishing shared versus distinct drug pathways based on comparative cell growth inhibition profiles across a small panel of human lymphoblastoid cell lines (LCLs) from individual donors.
Materials & Methods: LCLs from unrelated healthy donors were examined in parallel for growth inhibition profiles of various drugs, including antidepressants (paroxetine, fluoxetine, fluvoxamine, citalopram, amitriptyline and imipramine); anticancer drugs (5-fluorouracil, 6-mercaptopurine, azathioprine, methotrexate and resveratrol); steroid drugs (dexamethasone, beclomethasone and prednisolone); and antipsychotic drugs (haloperidol and clozapine). Cell growth was assessed by the colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenly)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide method following 72 h of drug exposure.
Results: LCLs from unrelated individuals exhibited a wide range of sensitivities to growth inhibition by a given drug, which were independent of basal cell replication rates. Yet, each individual cell line demonstrated a consistent sensitivity to multiple drugs from the same family. High goodness-of-fit values (R(2) > 0.6) were consistently observed for plots comparing the growth-inhibition profiles for paired drugs sharing a similar pathway, for example antidepressants, steroid drugs, antipsychotics, or 6-mercaptopurine compared with azathioprine, but not for drugs with different pathways. The method's utility is demonstrated by the observation that chlorpheniramine, an antihistamine drug long suspected to also possess antidepressant-like properties, exhibits a growth-inhibition profile very similar to antidepressants.
Conclusion: Comparing the growth-inhibition profiles of drugs (or compounds) of interest with the profiles of drugs with known pathways may assist in drug pathway classification. The method is useful for in vitro assessment of in silico-generated drug pathway predictions and for distinguishing shared versus distinct pathways for compounds of interest. Comparative transcriptomics analysis of human lymphoblastoid cell lines exhibiting 'edge' sensitivities can subsequently be utilized in the search for drug response biomarkers for personalized pharmacotherapy. The limitations and advantages of the method are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/pgs.10.27 | DOI Listing |
J Cell Biol
March 2025
Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
The interplay between ribosomal protein (RP) composition and mitochondrial function is essential for energy homeostasis. Balanced RP production optimizes protein synthesis while minimizing energy costs, but its impact on mitochondrial functionality remains unclear. Here, we investigated haploinsufficiency for RP genes (rps-10, rpl-5, rpl-33, and rps-23) in Caenorhabditis elegans and corresponding reductions in human lymphoblast cells.
View Article and Find Full Text PDFViruses
December 2024
Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
Lymphocryptoviruses (LCVs) are ubiquitous gamma-herpesviruses that establish life-long infections in both humans and non-human primates (NHPs). In immunocompromised hosts, LCV infections are commonly associated with B cell disorders and malignancies such as lymphoma. In this study, we evaluated simian LCV-encoded small microRNAs (miRNAs) present in lymphoblastoid cell lines (LCLs) derived from a Mauritian cynomolgus macaque () with cyLCV-associated post-transplant lymphoproliferative disease (PTLD) as well as the viral miRNAs expressed in a baboon () LCL that harbors CeHV12.
View Article and Find Full Text PDFClin Epigenetics
December 2024
Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Dean's office, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary. Electronic address:
ABCB1/MDR-1/P-glycoprotein (Pgp) is an ABC transporter responsible for cancer cell multi-drug resistance. It is expressed in cytotoxic T lymphocytes (CTL). Eliminating sensitive cancer cells during high-dose chemotherapy can also damage immune cells.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
CHAMP1 (chromosome alignment-maintaining phosphoprotein 1) plays a role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The CHAMP1 gene is one of the genes mutated in individuals with intellectual disability. The majority of the mutations are premature termination codon (PTC) mutations, while missense mutations have also been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!