Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We explored the effect of Cd substitution on the thermoelectric properties of PbTe in an effort to test a theoretical hypothesis that Cd atoms on Pb sites of the rock salt lattice can increase the Seebeck coefficient via the formation of a resonance level in the density of states near the Fermi energy. We find that the solubility of Cd is less than previously reported, and CdTe precipitation occurs to create nanostructuring, which strongly suppresses the lattice thermal conductivity. We present detailed characterization including structural and spectroscopic data, transmission electron microscopy, and thermoelectric transport properties of samples of PbTe-x% CdTe-0.055% PbI(2) (x = 1, 3, 5, 7, 10), PbTe-1% CdTe-y% PbI(2) (y = 0.03, 0.045, 0.055, 0.08, 0.1, 0.2), PbTe-5% CdTe-y% PbI(2) (y = 0.01, 0.03, 0.055, 0.08), and PbTe-1% CdTe-z% Sb (z = 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6). All samples follow the Pisarenko relationship, and no enhancement of the Seebeck coefficient was observed that could be attributed to a resonance level or a distortion in the density of states. A maximum ZT of approximately 1.2 at approximately 720 K was achieved for the PbTe-1% CdTe-0.055% PbI(2) sample arising from a high power factor of approximately 17 microW/(cm K(2)) and a very low lattice thermal conductivity of approximately 0.5 W/(m K) at approximately 720 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja910762q | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!