Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging.

Nanotechnology

The Institute for Lasers, Photonics and Biophotonics (ILPB), University at Buffalo, State University of New York, Buffalo, NY 14260-4200, USA.

Published: April 2010

AI Article Synopsis

  • The study focuses on using near-infrared (NIR) quantum dots (QDs) for better imaging of tumors, specifically how alloyed CdTe(1 - x)Se(x)/CdS QDs can be made and delivered effectively in living organisms.
  • The QDs are encased in micelles for safe water dispersion and are conjugated with a targeting peptide (cRGD) that binds to tumor blood vessels to enhance imaging precision.
  • Results show that these conjugated QDs effectively target tumors in mice without causing toxicity, suggesting they could be valuable for both imaging and therapy in cancer treatment.

Article Abstract

In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe(1 - x)Se(x)/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the alpha(v)beta(3) integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/21/14/145105DOI Listing

Publication Analysis

Top Keywords

quantum dots
8
qds
8
vivo
5
functionalized near-infrared
4
near-infrared quantum
4
dots vivo
4
vivo tumor
4
tumor vasculature
4
imaging
4
vasculature imaging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!