We report the presence of oligosaccharide structures on a glutamine residue present in the V(L) domain sequence of a recombinant human IgG2 molecule. Residue Gln-106, present in the QGT sequence following the rule of an asparagine-linked consensus motif, was modified with biantennary fucosylated oligosaccharide structures. In addition to the glycosylated glutamine, analysis of a lectin-enriched antibody population showed that 4 asparagine residues: heavy chain Asn-162, Asn-360, and light chain Asn-164, both of which are present in the IgG1 and IgG2 constant domain sequences, and Asn-35, which was present in CDR(L)1, were also modified with oligosaccharide structures at low levels. The primary sequences around these modified residues do not adhere to the N-linked consensus sequon, NX(S/T). Modeling of these residues from known antibody crystal structures and sequence homology comparison indicates that non-consensus glycosylation occurs on Asn residues in the context of a reverse consensus motif (S/T)XN located on highly flexile turns within 3 residues of a conformational change. Taken together our results indicate that protein glycosylation is governed by more diversified requirements than previously appreciated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871470PMC
http://dx.doi.org/10.1074/jbc.M109.096412DOI Listing

Publication Analysis

Top Keywords

oligosaccharide structures
12
protein glycosylation
8
consensus motif
8
residues
5
glutamine-linked non-consensus
4
non-consensus asparagine-linked
4
asparagine-linked oligosaccharides
4
oligosaccharides human
4
human recombinant
4
recombinant antibodies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!