[Molecular mapping and identification of quantitative trait loci for yield components in rapeseed (Brasscia napus L.)].

Yi Chuan

Oilseed Crops Institute/National Oilseed Crops Improvement Center in Hunan, Hunan Agricultural University, Changsha 410128, China.

Published: March 2010

A F2 segregating population for genetic map construction and identification of QTL for seed yield in rapeseed (Brassica napus L.), was developed via crossing a conventional rapeseed line 04-1139 with a high yielding multiple silique rapeseed line 05-1054. A genetic map including 19 linkage groups was constructed with 200 SSR (Simple sequence repeat) and SRAP (Sequence-related amplified polymorphism) markers. This map covers a total length of 1 700.23 cM with an average distance between two adjacent makers of 8.50 cM. Using this map, QTL for the components of yield per plant, such as number of silique per plant (SNP), number of seeds per silique (SS) were analyzed. A total of 12 putative QTL for the traits were detected. Four of them were associated with SNP, which explained 35.64%, 12.96%, 28.71%, and 34.02% of the variation, respectively. Five QTL, which explained 8.41%, 7.87%, 24.37%, 8.57%, and 14.31% of the variation, were responsible for SS. Three QTL for 1 000-seed weight explained 1.81%-2.33% of the variation. The additional effects of the alleles for a trait may originate from both parents. The markers associated with the main QTL can be a good tool for marker associated selection and pyramiding breeding.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2010.00271DOI Listing

Publication Analysis

Top Keywords

genetic map
8
qtl
6
[molecular mapping
4
mapping identification
4
identification quantitative
4
quantitative trait
4
trait loci
4
loci yield
4
yield components
4
rapeseed
4

Similar Publications

Background: Broussonetia papyrifera, B. monoica, and B. kaempferi belong to the genus Broussonetia (Moraceae).

View Article and Find Full Text PDF

A dataset of Antarctic ecosystems in ice-free lands: classification, descriptions, and maps.

Sci Data

January 2025

Centre for Ecosystem Science, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Antarctica, Earth's least understood and most remote continent, is threatened by human disturbances and climate-related changes, underscoring the imperative for biodiversity inventories to inform conservation. Antarctic ecosystems support unique species and genetic diversity, deliver essential ecosystem services and contribute to planetary stability. We present Antarctica's first comprehensive ecosystem classification and map of ice-free lands, which host most of the continent's biodiversity.

View Article and Find Full Text PDF

Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (mA) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity.

View Article and Find Full Text PDF

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by significant heterogeneity among patients. 23Na MRI maps abnormal sodium homeostasis that reflects metabolic alterations and energetic failure contributing to the neurodegenerative process. In this study, we investigated disease severity at the individual level in ALS patients using brain 23Na MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!