In order to analyze the conservation of maize centromeric satellite DNA (CentC) and centromeric retrotransposon (CRM) in the subspecies and relatives of Zea mays, dual fluorescence in situ hybridization (FISH) was used to detect the existence and distribution of the above two repetitive sequences in Zea mays ssp. mexicana, Z. diploperennis, Z. perennis, Tripsacum dactyloides, Coix lacryma-jobi, and Sorghum bicolor. In Z. mays ssp. mexicana, Z. diploperennis, and Z. perennis, both CentC and CRM probes produced strong or relatively strong signals in the centromeric regions of all chromosomes. There was an obvious variation in the intensity of hybridization signals on different chromosomes, indicating that different centromeres have different amounts of CentC and CRM sequences. In some centromeres, the intensity of CentC signals differed from that of CRM signals and was free from overlapping. In T. dactyloides, only weak CentC and CRM signals were detected in the centromeric regions of most chromosomes, while in C. lacryma-jobi and S. bicolor only relatively strong or strong CRM signals primarily located in the centromeric regions were detected. This result indicates that CentC is highly conserved among the subspecies of Z. mays and the species of Zea, and has high conservation in Tripsacum, a genus that is most closely related to Zea, and CRM is conserved among the species of grass family either closely or distantly related to Zea.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2010.00264DOI Listing

Publication Analysis

Top Keywords

centc crm
12
centromeric regions
12
crm signals
12
maize centromeric
8
fluorescence situ
8
zea mays
8
mays ssp
8
ssp mexicana
8
mexicana diploperennis
8
diploperennis perennis
8

Similar Publications

Cohesion and centromere activity are required for phosphorylation of histone H3 in maize.

Plant J

December 2017

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Haspin-mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.

View Article and Find Full Text PDF

Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences.

Plant Cell

June 2013

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.

The maize (Zea mays) B centromere is composed of B centromere-specific repeats (ZmBs), centromere-specific satellite repeats (CentC), and centromeric retrotransposons of maize (CRM). Here we describe a newly formed B centromere in maize, which has lost CentC sequences and has dramatically reduced CRM and ZmBs sequences, but still retains the molecular features of functional centromeres, such as CENH3, H2A phosphorylation at Thr-133, H3 phosphorylation at Ser-10, and Thr-3 immunostaining signals. This new centromere is stable and can be transmitted to offspring through meiosis.

View Article and Find Full Text PDF

Inactivation of a centromere during the formation of a translocation in maize.

Chromosome Res

August 2011

Division of Biological Sciences, University of Missouri, 311 Tucker Hall, Columbia, MO 65211, USA.

Fluorescence in situ hybridization analysis of a reciprocal translocation in maize between chromosomes 1 and 5 that has been used extensively in maize genetics revealed the presence of an inactive centromere at or near the breakpoints of the two chromosomes. This centromere contains both the satellite repeat, CentC, and the centromeric retrotransposon family, CRM, that are typical of centromere regions in maize. This site does not exhibit any of the tested biochemical features of active centromeres such as association with CENP-C and phosphorylation of serine-10 on histone H3.

View Article and Find Full Text PDF

In order to analyze the conservation of maize centromeric satellite DNA (CentC) and centromeric retrotransposon (CRM) in the subspecies and relatives of Zea mays, dual fluorescence in situ hybridization (FISH) was used to detect the existence and distribution of the above two repetitive sequences in Zea mays ssp. mexicana, Z. diploperennis, Z.

View Article and Find Full Text PDF

We describe a comprehensive and general approach for mapping centromeres and present a detailed characterization of two maize centromeres. Centromeres are difficult to map and analyze because they consist primarily of repetitive DNA sequences, which in maize are the tandem satellite repeat CentC and interspersed centromeric retrotransposons of maize (CRM). Centromeres are defined epigenetically by the centromeric histone H3 variant, CENH3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!