A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parameter identification, experimental design and model falsification for biological network models using semidefinite programming. | LitMetric

One of the most challenging tasks in systems biology is parameter identification from experimental data. In particular, if the available data are noisy, the resulting parameter uncertainty can be huge and should be quantified. In this work, a set-based approach for parameter identification in discrete time models of biochemical reaction networks from time series data is developed. The basic idea is to determine an outer approximation to the set of parameters for which trajectories are consistent with the available data. In order to approximate the set of consistent parameters (SCP) a feasibility problem is derived. This feasibility problem is used to verify that complete parameter sets cannot contain consistent parameters. This method is very appealing because instead of checking a finite number of distinct points, complete sets are analysed. With this approach, model falsification simply corresponds to showing that the SCP is empty. Besides parameter identification, a novel set-based method for experimental design is presented. This method yields reliable predictions on the information content of future measurements also for the case of very limited a priori knowledge and uncertain inputs. The properties of the method are presented using a discrete time model of the MAP kinase cascade.

Download full-text PDF

Source
http://dx.doi.org/10.1049/iet-syb.2009.0030DOI Listing

Publication Analysis

Top Keywords

parameter identification
16
identification experimental
8
experimental design
8
model falsification
8
discrete time
8
consistent parameters
8
feasibility problem
8
parameter
6
design model
4
falsification biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!