FT-IR, Raman, RRS measurements and DFT calculation for doxorubicin.

Microsc Res Tech

Nanofabrication Division, Nanobiotech Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy.

Published: October 2010

Doxorubicin (DOXO) is a powerful anthracycline antibiotic used to treat many human neoplasms, including acute leukemias, lymphomas, stomach, breast and ovarian cancer, and bone tumors, yet causing cardiotoxicity at the same time. For this reason, there is a great interest in medical field to gain deep insight and knowledge of this molecule. Raman, Fourier Transform Infrared (FT-IR) absorption spectroscopy, and Resonance Raman scattering were performed for the vibrational characterization of DOXO molecule. Density function theorem (DFT) modeling of Raman and FT-IR spectra were used for the assignment of the vibrational frequencies. The optimized molecular structured was obtained, first, on the basis of potential energy distribution. The simulation for vibrational bands is based on the calculations for internal force constants and potential energy distribution matrices. The calculated DOXO vibrational bands show qualitative agreement with the experimental observations (FT-IR absorption and Raman scattering).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.20849DOI Listing

Publication Analysis

Top Keywords

ft-ir absorption
8
raman scattering
8
potential energy
8
energy distribution
8
vibrational bands
8
ft-ir
4
ft-ir raman
4
raman rrs
4
rrs measurements
4
measurements dft
4

Similar Publications

The use of biomass feedstocks for producing high-value-added chemicals is gaining significant attention in the academic community. In this study, near-infrared carbon dots (NIR-CDs) with antimicrobial and bioimaging functions were prepared from branches and leaves using a novel green synthesis approach. The spectral properties of the synthesized NIR-CDs were characterized by ultraviolet-visible (UV-Vis) absorption and fluorescence spectroscopy.

View Article and Find Full Text PDF

g-CN Modified with Metal Sulfides for Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants.

Molecules

January 2025

Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary.

Graphitic carbon nitride (g-CN) proved to be a promising semiconductor for the photocatalytic degradation of various organic pollutants. However, its efficacy is limited by a fast electron hole recombination, a restricted quantity of active sites, and a modest absorption in the visible range. To overcome these limitations, g-CN-BiS and g-CN-ZnS composites were effectively produced utilizing a starch-assisted technique.

View Article and Find Full Text PDF

This study introduces a sustainable approach for enhancing the fire retardancy and smoke suppression of poly(lactic acid) (PLA) composites, contributing to addressing one of the major challenges in biocomposites that limits their application in various engineering fields, as automotive and construction sectors. Flax fibers (FF) were surface functionalized with a novel organic-inorganic hybrid flame retardant (FR), offering a sustainable bioinspired approach that mitigates potential mechanical properties impairment and FR leaching, which can cause environmental concerns and reduced composite durability. The process involves a three-step coating procedure.

View Article and Find Full Text PDF

As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.

View Article and Find Full Text PDF

Lead (Pb) toxicity impairs the growth, yield, and biochemical traits of rice, making it essential to mitigate Pb stress in soil and restore its growth and production. This study investigated the potential of ascorbic acid-coated quantum dots (AsA-QDs) in alleviating Pb stress in two rice cultivars, Japonica (JP-5) and Indica (Super Basmati), grown in pots under Pb stress (50 mg/kg as lead chloride) with AsA-QD suspensions (50 ppm and 100 ppm) as treatments. The synthesized AsA-QDs were characterized by zeta potential (-14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!