Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Melanin has been found to interact with a number of molecules including metal ions, antibiotics and proteins. In this study, we showed how melanin from bacteria can interact with double-stranded DNA. Investigation using capillary electrophoresis, various spectroscopic techniques and circular dichroism found that melanin interacts with DNA by intercalating between the base pairs of DNA. And this was further supported by simulating different forms of melanin docking to oligonucleotides. Transmission electron microscopy of recombinant Escherichia coli producing melanin suggested the interaction in vivo. Furthermore, we showed how the cytoplasmic localization of melanin may provide a novel function in inhibiting cellular metabolism using microcalorimetry. The implications of the interaction in prokaryotes and eukaryotes were discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-010-0560-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!