Background & Objectives: Olfaction is the major sensory modality involved in the resource searching behaviour of insects including vector mosquitoes (Diptera: Culicidae). To date, our current countrywide knowledge on the host-seeking behaviour of Iranian mosquitoes is mainly confined to host preference which has exclusively come from field studies. Olfactometer is a scientific tool by which more naive aspects of man-vector contact can be clarified under controlled and less biased conditions.
Methods: The wind tunnel and stimulus delivery system was constructed from acrylic materials based on previously introduced models with some modifications. Air supply and required light were ensured by a powerful compressor and incandescent bulbs, respectively. Desired level of temperature was maintained by controllable heating radiators. For humidity production a unique in-built piezo system was devised in the course of the air flow. Fine regulators facilitated the continuous generatation of the humidity at a preset level.
Results: Titanium tetrachloride smoke plus monitoring of the wind speed revealed that the flow of air was proper and invariable. A desired level of humidity and temperature could be set up in just 10 and 15-45 min, respectively. These physical parameters varied only +/-2% (humidity) and +/-0.15 degrees C (temperature) in a typical 20 min duration.
Conclusion: The first sophisticated olfactometer in the field of medical entomology in Iran is reported here. Fast set up and stability of physical parameters are its salient features. It is expected that with the aid of this olfactometer further information on the physiological principles of the host-seeking behaviour of mosquitoes become available soon.
Download full-text PDF |
Source |
---|
J Med Entomol
January 2025
Department of Zoology, The University of Burdwan, West Bengal, India.
Host-seeking behavior of Culicoides species was examined from 2018 to 2019 in West Bengal, India, which elucidated diel activity, feeding success, attack rate, biting rate, and preferential landing of adult Culicoides on the cattle. A comparative assessment was done between the light trap and the aspirator. The host-seeking experiment involved a substantial timeframe of 297 h of catch collections over 27 nights.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Department of Veterinary Medicine, University of Bari, Bari, Italy.
The olfactory response of insect vectors such as phlebotomine sand flies is a key facet for investigating their interactions with vertebrate hosts and associated vector-borne pathogens. Such studies are mainly performed by assessing the electrophysiological response and the olfactory behaviour of these arthropods towards volatile organic compounds (VOCs) produced by hosts. Nonetheless, few studies are available for species of the subgenera Lutzomyia and Nyssomyia in South America, leaving a void for Old World sand fly species of the genus Phlebotomus.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.
Sensory compensation occurs when loss of one sense leads to enhanced perception by another sense. We have identified a previously undescribed mechanism of sensory compensation in female mosquitoes. Odorant receptor co-receptor () mutants show enhanced attraction to human skin temperature and increased heat-evoked neuronal activity in foreleg sensory neurons.
View Article and Find Full Text PDFParasit Vectors
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Morogoro, Tanzania.
Background: The Anopheles funestus group includes at least 11 sibling species, with Anopheles funestus Giles being the most studied and significant malaria vector. Other species, like Anopheles parensis, are understudied despite their potential role in transmission. This article provides insights into the biology and insecticide susceptibility of An.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!