AI Article Synopsis

Article Abstract

Locus ceruleus (LC)-supplied norepinephrine (NE) suppresses neuroinflammation in the brain. To elucidate the effect of LC degeneration and subsequent NE deficiency on Alzheimer's disease pathology, we evaluated NE effects on microglial key functions. NE stimulation of mouse microglia suppressed Abeta-induced cytokine and chemokine production and increased microglial migration and phagocytosis of Abeta. Induced degeneration of the locus ceruleus increased expression of inflammatory mediators in APP-transgenic mice and resulted in elevated Abeta deposition. In vivo laser microscopy confirmed a reduced recruitment of microglia to Abeta plaque sites and impaired microglial Abeta phagocytosis in NE-depleted APP-transgenic mice. Supplying the mice the norepinephrine precursor L-threo-DOPS restored microglial functions in NE-depleted mice. This indicates that decrease of NE in locus ceruleus projection areas facilitates the inflammatory reaction of microglial cells in AD and impairs microglial migration and phagocytosis, thereby contributing to reduced Abeta clearance. Consequently, therapies targeting microglial phagocytosis should be tested under NE depletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851853PMC
http://dx.doi.org/10.1073/pnas.0909586107DOI Listing

Publication Analysis

Top Keywords

locus ceruleus
16
alzheimer's disease
8
disease pathology
8
microglial
8
microglial functions
8
microglial migration
8
migration phagocytosis
8
app-transgenic mice
8
abeta
5
locus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!