Background: Mitochondrial DNA (mtDNA) encodes key proteins associated with the process of oxidative phosphorylation. Defects to mtDNA cause severe disease phenotypes that can affect offspring survival. The aim of this review is to identify how mtDNA is replicated as it transits from the fertilized oocyte into the preimplantation embryo, the fetus and offspring. Approaches for deriving offspring and embryonic stem cells (ESCs) are analysed to determine their potential application for the prevention and treatment of mtDNA disease.
Methods: The scientific literature was investigated to determine how mtDNA is transmitted, replicated and segregated during pluripotency, differentiation and development. It was also probed to understand how the mtDNA nucleoid is regulated in somatic cells.
Results: mtDNA replication is strictly down-regulated from the fertilized oocyte through the preimplantation embryo. At the blastocyst stage, the onset of mtDNA replication is specific to the trophectodermal cells. The inner cell mass cells restrict mtDNA replication until they receive the key signals to commit to specific cell types. However, it is necessary to determine whether somatic cells reprogrammed through somatic cell nuclear transfer, induced pluripotency or fusion to an ESC are able to regulate mtDNA replication so that they can be used for patient-specific cell therapies and to model disease.
Conclusions: Prevention of the transmission of mtDNA disease from one generation to the next is still restricted by our lack of understanding as to how to ensure that a donor karyoplast transferred to an enucleated oocyte is free of accompanying mutant mtDNA. Techniques still need to be developed if stem cells are to be used to treat mtDNA disease in those patients already suffering from the phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/humupd/dmq002 | DOI Listing |
Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015. JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
There is a myriad of activities that involve mitochondria that are crucial for maintaining cellular equilibrium and genetic stability. In the pathophysiology of neurodegenerative illnesses, mitochondrial transcription influences mitochondrial equilibrium, which in turn affects their biogenesis and integrity. Among the crucial proteins for keeping the genome in optimal repair is mitochondrial transcription factor A, more commonly termed TFAM.
View Article and Find Full Text PDFNeuropharmacology
January 2025
School of Pharmacy and Biomedical Sciences, The University of Central Lancashire, Preston UK. Electronic address:
Personality disorders (PDs) are psychiatric conditions characterized by enduring patterns of cognition, emotion, and behaviour that deviate significantly from cultural norms, causing distress or impairment. The aetiology of PDs is complex, involving both genetic and environmental factors. Genetic studies estimate the heritability of PDs at 30% to 60%, implicating genes involved in neurotransmitter regulation, such as those for serotonin transporters and dopamine receptors.
View Article and Find Full Text PDFMicroorganisms
January 2025
Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
Although the mitochondrial genome is an attribute of all eukaryotes, some yeast species (called petite-positive) can replicate without mitochondrial DNA (mtDNA). Strains without mtDNA (known as rho mutants or petite mutants) are respiration-deficient and require fermentable carbon sources (such as glucose) for their metabolism. However, they are compromised in many aspects of fitness and competitiveness.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908.
Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!