A tomato (Lycopersicon esculentum Mill.) monodehydroascorbate reductase gene (LeMDAR) was isolated. The LeMDAR-green fluorescence protein (GFP) fusion protein was targeted to chloroplast in Arabidopsis mesophyll protoplast. RNA and protein gel blot analyses confirmed that the sense- and antisense- LeMDAR were integrated into the tomato genome. The MDAR activities and the levels of reduced ascorbate (AsA) were markedly increased in sense transgenic lines and decreased in antisense transgenic lines compared with wild-type (WT) plants. Under low and high temperature stresses, the sense transgenic plants showed lower level of hydrogen peroxide (H(2)O(2)), lower thiobarbituric acid reactive substance (TBARS) content, higher net photosynthetic rate (P(n)), higher maximal photochemical efficiency of PSII (F(v)/F(m)) and fresh weight compared with WT plants. The oxidizable P700 decreased more obviously in WT and antisense plants than that in sense plants at chilling temperature under low irradiance. Furthermore, the sense transgenic plants exhibited significantly lower H(2)O(2) level, higher ascorbate peroxidase (APX) activity, greater P(n) and F(v)/F(m) under methyl viologen (MV)-mediated oxidative stresses. These results indicated that overexpression of chloroplastic MDAR played an important role in alleviating photoinhibition of PSI and PSII and enhancing the tolerance to various abiotic stresses by elevating AsA level.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2010.01369.xDOI Listing

Publication Analysis

Top Keywords

sense transgenic
12
overexpression chloroplastic
8
monodehydroascorbate reductase
8
oxidative stresses
8
transgenic lines
8
decreased antisense
8
transgenic plants
8
plants
6
chloroplastic monodehydroascorbate
4
reductase enhanced
4

Similar Publications

Background: RNA silencing-based antiviral breeding is a promising strategy for developing virus-resistant plants.

Objectives: This study employed viral sense, anti-sense, and hairpin constructs to induce resistance against beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV).

Materials And Methods: For this purpose, a 120-bp conserved sequence of Rep- and C2-BCTV and a 222-bp conserved sequence of CP-, Reg-, and MP-BCTIV were selected for construct production.

View Article and Find Full Text PDF

Role of biotin carboxyl carrier protein subunit 2 (BCCP2) in resistance to multiple stresses in Arabidopsis thaliana.

Biochem Biophys Res Commun

December 2024

Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China. Electronic address:

Abiotic stresses, including drought, salinity, and temperature extremes, are serious constraints to plant growth and agricultural development. These stresses that plants face in nature are often multiple and complex. Biotin carboxyl carrier protein subunit 2 (BCCP2) is one of the two subunits of biotin carboxyl carrier protein, which is a functional subunit of acetyl coenzyme A carboxylase, primarily studied for its role in fatty acid synthesis.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Innovative transgenic zebrafish biosensor for heavy metal detection.

Environ Pollut

December 2024

Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka. Electronic address:

Heavy metal contamination is an urgent environmental issue that poses a significant threat to human health and the ecosystem. To mitigate the adverse impacts of heavy metal pollution, the aim of this research was to develop genetically engineered zebrafish as biosensors, which offer a promising alternative for detecting heavy metal exposure, specifically Cd⁺ and Zn⁺. A novel heavy metal-sensitive gene construct metallothionine 2 promoter with DsRed reporter gene (mt2-DsRed2) was synthesized and integrated into zebrafish embryos using a Tol2 transposon transposase system with the transgenic zebrafish line subjected to biosensing applications for Cd and Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!